189 8069 5689

人工智能未来发展大趋势

人与机器人的不同是什么?人可以通过后天的学习不断的是自我充实,而且人是富有情感的,但是机器人可以吗?现在有一个展现的名词运用在人工智能领域它就是-深度学习.

创新互联专业为企业提供镜湖网站建设、镜湖做网站、镜湖网站设计、镜湖网站制作等企业网站建设、网页设计与制作、镜湖企业网站模板建站服务,十多年镜湖做网站经验,不只是建网站,更提供有价值的思路和整体网络服务。

深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。

深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。

深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。

深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本等。

2016年3月,阿尔法围棋与围棋世界冠军、职业九段棋手李世石进行围棋人机大战,以4比1的总比分获胜;2016年末2017年初,该程序在中国棋类网站上以“大师”(Master)为注册账号与中日韩数十位围棋高手进行快棋对决,连续60局无一败绩;2017年5月,在中国乌镇围棋峰会上,它与排名世界第一的世界围棋冠军柯洁对战,以3比0的总比分获胜。围棋界公认阿尔法围棋的棋力已经超过人类职业围棋顶尖水平,在GoRatings网站公布的世界职业围棋排名中,其等级分曾超过排名人类第一的棋手柯洁。阿尔法围棋(AlphaGo)是一款围棋人工智能程序。其主要工作原理是“深度学习”。“深度学习”是指多层的人工神经网络和训练它的方法。一层神经网络会把大量矩阵数字作为输入,通过非线性激活方法取权重,再产生另一个数据集合作为输出。这就像生物神经大脑的工作机理一样,通过合适的矩阵数量,多层组织链接一起,形成神经网络“大脑”进行精准复杂的处理,就像人们识别物体标注图片一样。

阿尔法围棋用到了很多新技术,如神经网络、深度学习、蒙特卡洛树搜索法等,使其实力有了实质性飞跃。美国脸书公司“黑暗森林”围棋软件的开发者田渊栋在网上发表分析文章说,阿尔法围棋系统主要由几个部分组成:一、策略网络(Policy Network),给定当前局面,预测并采样下一步的走棋;二、快速走子(Fast rollout),目标和策略网络一样,但在适当牺牲走棋质量的条件下,速度要比策略网络快1000倍;三、价值网络(Value Network),给定当前局面,估计是白胜概率大还是黑胜概率大;四、蒙特卡洛树搜索(Monte Carlo Tree Search),把以上这三个部分连起来,形成一个完整的系统。

两个大脑

围棋人机大战

阿尔法围棋(AlphaGo)是通过两个不同神经网络“大脑”合作来改进下棋。这些“大脑”是多层神经网络,跟那些Google图片搜索引擎识别图片在结构上是相似的。它们从多层启发式二维过滤器开始,去处理围棋棋盘的定位,就像图片分类器网络处理图片一样。经过过滤,13个完全连接的神经网络层产生对它们看到的局面判断。这些层能够做分类和逻辑推理。

第一大脑:落子选择器 (Move Picker)

阿尔法围棋(AlphaGo)的第一个神经网络大脑是“监督学习的策略网络(Policy Network)” ,观察棋盘布局企图找到的下一步。事实上,它预测每一个合法下一步的概率,那么最前面猜测的就是那个概率高的。这可以理解成“落子选择器”。

第二大脑:棋局评估器 (Position Evaluator)

阿尔法围棋(AlphaGo)的第二个大脑相对于落子选择器是回答另一个问题,它不是去猜测具体下一步,而是在给定棋子位置情况下,预测每一个棋手赢棋的概率。这“局面评估器”就是“价值网络(Value Network)”,通过整体局面判断来辅助落子选择器。这个判断仅仅是大概的,但对于阅读速度提高很有帮助。通过分析归类潜在的未来局面的“好”与“坏”,阿尔法围棋能够决定是否通过特殊变种去深入阅读。如果局面评估器说这个特殊变种不行,那么AI就跳过阅读。

深度学习在人工智能未来发展中必定会扮演极其重要的角色,这也意味着机器人从此进入会独立思考学习的时代,更多的人工智能应用也会陆续提升自身产品的学习能力,对于人们来说有思考以及学习能力的机器人是否可以完全掌控呢?我想这也是一个很大问题,如果有一天机器人比人类还要聪明还要有智慧,那人类的命运会如何……


网站标题:人工智能未来发展大趋势
文章分享:http://gzruizhi.cn/article/cpphpd.html

其他资讯