189 8069 5689

在分布式数据库中怎么计算count-创新互联

这篇文章主要介绍“在分布式数据库中怎么计算count”,在日常操作中,相信很多人在在分布式数据库中怎么计算count问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”在分布式数据库中怎么计算count”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

创新互联服务项目包括田东网站建设、田东网站制作、田东网页制作以及田东网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,田东网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到田东省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!

背景

在分布式数据库中,计算count(distinct xxx),需要对distinct 的字段,

1、去重,

2、重分布去重后的数据,(这一步,如果distinct值特别多,那么就会比较耗时)

3、然后再去重,

4、最后count (xxx),

5、求所有节点的count SUM。

例如,以下是Greenplum的执行计划例子

postgres=# explain analyze select count(distinct c_acctbal) from customer;  
                                                                             QUERY PLAN                                                                               
--------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 Aggregate  (cost=182242.41..182242.42 rows=1 width=8)  
   Rows out:  1 rows with 0.006 ms to first row, 69 ms to end, start offset by 23 ms.  
   ->  Gather Motion 16:1  (slice2; segments: 16)  (cost=53392.85..173982.82 rows=660767 width=8)  
         Rows out:  818834 rows at destination with 3.416 ms to first row, 447 ms to end, start offset by 23 ms.  
         ->  HashAggregate  (cost=53392.85..61652.43 rows=41298 width=8)  
               Group By: customer.c_acctbal  
               Rows out:  Avg 51177.1 rows x 16 workers.  Max 51362 rows (seg3) with 0.004 ms to first row, 33 ms to end, start offset by 25 ms.  
               ->  Redistribute Motion 16:16  (slice1; segments: 16)  (cost=30266.00..43481.34 rows=41298 width=8)  
                     Hash Key: customer.c_acctbal  
                     Rows out:  Avg 89865.6 rows x 16 workers at destination.  Max 90305 rows (seg3) with 18 ms to first row, 120 ms to end, start offset by 25 ms.  
                     ->  HashAggregate  (cost=30266.00..30266.00 rows=41298 width=8)  
                           Group By: customer.c_acctbal  
                           Rows out:  Avg 89865.6 rows x 16 workers.  Max 89929 rows (seg2) with 0.007 ms to first row, 33 ms to end, start offset by 26 ms.  
                           ->  Append-only Columnar Scan on customer  (cost=0.00..22766.00 rows=93750 width=8)  
                                 Rows out:  Avg 93750.0 rows x 16 workers.  Max 93751 rows (seg4) with 20 ms to first row, 30 ms to end, start offset by 26 ms.  
 Slice statistics:  
   (slice0)    Executor memory: 387K bytes.  
   (slice1)    Executor memory: 6527K bytes avg x 16 workers, 6527K bytes max (seg0).  
   (slice2)    Executor memory: 371K bytes avg x 16 workers, 371K bytes max (seg0).  
 Statement statistics:  
   Memory used: 1280000K bytes  
 Optimizer status: legacy query optimizer  
 Total runtime: 723.143 ms  
(23 rows)

以下是citus的例子

postgres=# explain analyze select count(distinct bid) from pgbench_accounts ;  
                                                                            QUERY PLAN                                                                              
------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 Aggregate  (cost=0.00..0.00 rows=0 width=0) (actual time=31.748..31.749 rows=1 loops=1)  
   ->  Custom Scan (Citus Real-Time)  (cost=0.00..0.00 rows=0 width=0) (actual time=31.382..31.510 rows=1280 loops=1)  
         Task Count: 128  
         Tasks Shown: One of 128  
         ->  Task  
               Node: host=172.24.211.224 port=1921 dbname=postgres  
               ->  HashAggregate  (cost=231.85..231.95 rows=10 width=4) (actual time=3.700..3.702 rows=10 loops=1)  
                     Group Key: bid  
                     ->  Seq Scan on pgbench_accounts_106812 pgbench_accounts  (cost=0.00..212.48 rows=7748 width=4) (actual time=0.017..2.180 rows=7748 loops=1)  
                   Planning time: 0.445 ms  
                   Execution time: 3.781 ms  
 Planning time: 1.399 ms  
 Execution time: 32.159 ms  
(13 rows)

对于可估值计算的场景,即不需要精确distinct值的场景,PostgreSQL提供了一个名为hll的插件,可以用来估算distinct元素个数。

citus 结合hll,可以实现超高速的count(distinct xxx),即使distinct值非常非常多,也不慢。

SET citus.count_distinct_error_rate to 0.005;  
  
0.005表示失真度

hll加速citus count(distinct xxx)使用举例

部署

1、所有节点(coordinator 与 worker节点),安装hll软件

yum install -y gcc-c++  
  
cd ~/  
  
git clone https://github.com/citusdata/postgresql-hll  
  
cd postgresql-hll  
  
. /var/lib/pgsql/.bash_profile   
  
USE_PGXS=1 make  
USE_PGXS=1 make install

2、所有节点(coordinator 与 worker节点),在需要用到HLL的DB中增加插件

su - postgres -c "psql -d postgres -c 'create extension hll;'"  
  
su - postgres -c "psql -d newdb -c 'create extension hll;'"

使用举例

1、创建测试表,128 shard
create table test (id int primary key, a int, b int, c int);  
  
set citus.shard_count =128;   
  
select create_distributed_table('test', 'id');
2、写入10亿测试数据,a字段10唯一值,b字段100唯一值,c字段100万唯一值
insert into test select id, random()*9, random()*99, random()*999999 from generate_series(1,1000000000) t(id);
3、(coordinator节点)设置全局或当前会话级参数,指定失真度,越小失真度越小
SET citus.count_distinct_error_rate to 0.005;  
  
newdb=# explain select count(distinct bid) from pgbench_accounts group by bid;  
                                                          QUERY PLAN                                                             
-------------------------------------------------------------------------------------------------------------------------------  
 HashAggregate  (cost=0.00..0.00 rows=0 width=0)  
   Group Key: remote_scan.worker_column_2  
   ->  Custom Scan (Citus Real-Time)  (cost=0.00..0.00 rows=0 width=0)  
         Task Count: 128  
         Tasks Shown: One of 128  
         ->  Task  
               Node: host=172.24.211.224 port=8001 dbname=newdb  
               ->  GroupAggregate  (cost=97272.79..105102.29 rows=1000 width=36)  
                     Group Key: bid  
                     ->  Sort  (cost=97272.79..99227.04 rows=781700 width=4)  
                           Sort Key: bid  
                           ->  Seq Scan on pgbench_accounts_102008 pgbench_accounts  (cost=0.00..20759.00 rows=781700 width=4)  
(12 rows)
4、对比是否使用HLL加速(少量唯一值,HLL没有性能提升,因为本身就不存在瓶颈)
4.1、未使用hll
newdb=# set citus.count_distinct_error_rate to 0;  
newdb=# select count(distinct bid) from pgbench_accounts;  
 count   
-------  
  1000  
(1 row)  
  
Time: 423.364 ms  
  
postgres=# set citus.count_distinct_error_rate to 0;  
postgres=# select count(distinct a) from test;  
 count   
-------  
    10  
(1 row)  
  
Time: 2392.709 ms (00:02.393)
4.2、使用hll
newdb=# set citus.count_distinct_error_rate to 0.005;  
newdb=# select count(distinct bid) from pgbench_accounts;  
 count   
-------  
  1000  
(1 row)  
  
Time: 444.287 ms  
  
postgres=# set citus.count_distinct_error_rate to 0.005;  
postgres=# select count(distinct a) from test;  
 count   
-------  
    10  
(1 row)  
  
Time: 2375.473 ms (00:02.375)
5、对比是否使用HLL加速(大量唯一值,HLL性能提升显著)
5.1、未使用hll
postgres=# set citus.count_distinct_error_rate to 0;  
  
  count   
----------
 10000000
(1 row)
Time: 5826241.205 ms (01:37:06.241)

128个节点,每个节点最多发送10亿/128条数据给coordinator,慢是可以理解的。另一方面,coordinator可以边接收边去重(postgresql 11增加了parallel gather, merge sort等能力,citus coordinator可以借鉴),没必要等所有数据都收完再去重。

5.2、使用hll
postgres=# set citus.count_distinct_error_rate to 0.005;  
postgres=# select count(distinct (a,c)) from test;  
  count    
---------  
 9999995  
(1 row)  
  
Time: 4468.749 ms (00:04.469)
6、设置不同的精度参数,性能对比
newdb=# set citus.count_distinct_error_rate to 0.1;  
newdb=#  select count(distinct (aid,bid)) from pgbench_accounts ;  
  count     
----------  
 94778491  
(1 row)  
Time: 545.301 ms  
  
newdb=# set citus.count_distinct_error_rate to 0.01;  
newdb=#  select count(distinct (aid,bid)) from pgbench_accounts ;  
   count     
-----------  
 100293937  
(1 row)  
Time: 554.333 ms  
  
-- 推荐设置0.005  
  
newdb=# set citus.count_distinct_error_rate to 0.005;  
newdb=#  select count(distinct (aid,bid)) from pgbench_accounts ;  
   count     
-----------  
 100136086  
(1 row)  
Time: 1053.070 ms (00:01.053)  
  
newdb=# set citus.count_distinct_error_rate to 0.001;  
newdb=#  select count(distinct (aid,bid)) from pgbench_accounts ;  
   count     
-----------  
 100422107  
(1 row)  
Time: 9287.934 ms (00:09.288)

到此,关于“在分布式数据库中怎么计算count”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联-成都网站建设公司网站,小编会继续努力为大家带来更多实用的文章!


网页题目:在分布式数据库中怎么计算count-创新互联
转载源于:http://gzruizhi.cn/article/dcspig.html

其他资讯