189 8069 5689

gis技术地质监测 gis在地质学领域的发展方向

 资源与环境研究中的GIS

地理信息系统(Geographic Information System,简称GIS)是20世纪60年代以来随着电子计算机技术的发展及其广泛应用,在地理学中发展起来的一种新的工作手段和方法。该学科是介于信息科学、空间科学和地球科学之间的交叉学科,它是计算机科学、遥感技术、信息工程和现代化地理学理论与方法的有机结合,是它们应用的进一步延伸和发展,是地理学的又一新进展。

为河池等地区用户提供了全套网页设计制作服务,及河池网站建设行业解决方案。主营业务为成都网站制作、网站建设、外贸网站建设、河池网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!

一、地理信息与地理信息系统

地理信息是指表征地理系统诸要素的数量、质量、分布特征、相互联系和变化规律的数字、文字、图像和图形等的总称。从地理数据到地理信息的发展,是人类认识地理事物的一次飞跃。地球表面的岩石圈、水圈、大气圈和人类活动等是最大的地理信息源。地理科学的一个重要任务就是迅速地采集到地理空间的几何信息、物理信息和人为信息,并适时地识别、转换、存储、传输、再生成、显示、控制和应用这些信息。

地理信息属于空间信息,其位置的识别是与数据联系在一起的,这是地理信息区别于其他类型信息的最显著的标志。地理信息的这种定位特征,是通过经纬网或公路网建立的地理坐标来实现空间位置的识别;地理信息还具有多维结构的特征,即在二维空间的基础上实现多专题的第三维结构,而各个专题型实体型之间的联系是通过属性码进行的,这就为地理系统各圈层之间的综合研究提供了可能,也为地理系统多层次的分析和信息的传输与筛选提供了方便。地理信息的时序特征十分明显,因此可以按照时间尺度将地理信息划分为超短期的(如台风、地震)、短期的(如江河洪水、秋季低温)、中期的(如土地利用、作物估产)、长期的(如城市化、水土流失)、超长期的(如地壳变动、气候变化)等。地理信息的这种动态变化的特征,一方面要求地理信息的获取要及时,并定期更新;另一方面要从其自然的变化过程中研究其变化规律,从而作出地理事物的预测与预报,为科学决策提供依据。认识地理信息的这种区域性、多层次性和动态性变化的特征对建立地理信息系统,实现人口、资源、环境等的综合具有重要意义。

地理信息系统是以地理空间数据库为基础,在计算机软硬件的支持下,对空间相关数据进行采集、管理、操作、分析、模拟和显示,并采用地理模型分析方法,适时提供多种空间和动态的地理信息,为地理研究和地理决策服务而建立起来的计算机技术系统。因此,地理信息系统具有以下三个方面的特征:

(1)具有采集、管理、分析和输出多种地理空间信息的能力。

(2)以地理研究和地理决策为目的,以地理模型方法为手段,具有空间分析、多要素综合分析和动态预测的能力,并能产生高层次的地理信息。

(3)由计算机系统支持进行空间地理数据管理,并由计算机程序模拟常规的或专门的地理分析方法,作用于空间数据,产生有用信息,完成人类难以完成的任务;计算机系统的支持是GlS的重要特征,它能使GIS得到快速、精确、综合地对复杂的地理系统进行空间定位和动态分析。

二、GIS的组成部分

地理信息系统是一种计算机技术系统,它由信息输入、存储、数据的分析处理和信息的输出等基本部分组成,并在计算机软、硬件支持下运行工作。各种组成在GIS中所起的作用不同,可以分为五个组成部分:

(1)计算机硬件:指GIS所需要的基本设备。这些设备用来存储、处理和显示。对象主要是数字地图或数字图像数据。

(2)计算机软件:包括机器运行所需的各种程序及有关资料,如操作系统、编译程序、汇编程序、专用程序、GIS数据库管理系统、各种分析程序及使用分册、说明等。主要作用是完成各种GIS应有的操作。

(3)数据:GIS研究所需要的各种地理空间数据,包括数字化了的地图数据、经过数字转换的图像数据、分析用的统计数据等等。

(4)过程:GIS工作时,为了得到问题的解答而执行的一步一步的动作。不少系统在执行时,为了方便用户使用目录选择方式,又称作点“菜单”方式,作哪个动作就点哪项;也有的系统使用命令方式,根据用户需要打入命令,由系统完成,可以一个命令做一个动作,也可以一个命令完成一系列动作,也就是命令过程。

(5)专家:了解GIS,知道怎样使用系统,这是最重要的。有些系统不能被人完全了解,因而不能发挥出全部作用,更不能进一步发展系统。创造GIS的工作量很大,常以“人年”作为计量工作的单位。

三、GIS的类型

(1)专题地理信息系统:是具有有限目标和专业特点的地理信息系统。为特定的专门的目的服务,如水资源管理信息系统、矿产资源信息系统、农作物估产信息系统、草场资源管理信息系统、水土流失信息系统、环境管理信息系统等。

(2)区域地理信息系统:主要以区域综合研究和全面信息服务为目标。可以有不同规模,如国家级的、地区或省级的、市级或县级等为各不同级别行政区服务的区域信息系统,也可以按自然分区或流域为单位建立区域信息系统。区域信息系统如加拿大国家信息系统、美国橡树岭地区信息系统、圣地亚哥县信息系统、中国黄河流域信息系统等。

(3)地理信息系统工具:它是一组具有图形图像数字化、存储管理、查询检索、分析运算和多种输出等地理信息系统基本功能的软件包。它们或者是专门研究的,或者是在完成实用地理信息系统后抽去具体的区域或专题的地理空间数据后得到的。这些软件适于用来作为地理信息系统支撑软件,以建立专题或区域性的实用性地理信息系统,也可以作教学软件。由于地理信息系统设计技术较高,而且重复编辑比较复杂的基础软件也造成人力的极大浪费,因此采用地理信息系统工具,无疑是建立实用地理信息系统的一条捷径。

四、资源与环境研究中的GIS

进入21世纪,中国的GIS事业发展迅速,GIS的作用日益被大众所认识,并蓬勃应用到各种领域中。人类正在进入以信息技术和空间技术应用为特征的新型信息时代。作为新兴技术科学的地理信息系统,从20世纪80年代末期以来已成为最活跃的信息产业之一。它涉及到GIS软件、硬件、数据、遥感与航空摄影、制图、野外数据采集、数据交换、系统集成和咨询等内容。其中,软件是GIS的技术核心,而从事软件开发和系统集成的公司或机构则往往成为GIS产业的主体。

早期GIS主要应用于自动制图、设施管理和土地信息系统(LIS),后来逐步扩展到资源与环境管理、森林清查、城市规划、市政管理、灾害监测与预测、科学研究和军事战略等众多领域。随着GIS技术的成熟,数据积累和应用环境的改善,它的应用范围不断扩展,应用程度不断深化。GIS在资源与环境研究中的应用主要表现在以下几个方面:

1.资源清查与管理

资源的清查、管理和分析是GIS应用中趋于成熟而重要的领域,包括土地资源、森林资源和矿产资源的清查、管理,土地利用规划,野生动植物的保护等。资源清查是地理信息系统最基本的职能,这时系统的主要任务是将各种来源的数据汇集在一起,并通过系统的统计和覆盖分析功能,按多种边界和属性条件,提供区域多种条件组合形式的资源统计和资源状况分析,为资源的合理开发、利用和科学管理提供依据。

以土地利用类型为例,可以输出不同土地类型的分布和面积,按不同高程带划分的土地利用类型、不同坡度区内的土地利用现状、不同岩性引起的土地利用差异以及不同时期的土地利用变化等,为资源的合理利用、开发和科学管理提供依据。又如中国西南地区国土资源信息系统,设置了三个功能子系统,即数据库系统、辅助决策系统、图形系统。资源数据存储了1500多项300多万个。该系统提供了一系列资源分析与评价模型、资源预测预报及西南地区资源合理开发配置的资料。可绘制草场资源分布图、矿产资源分布图、各地县产值统计图、农作物产量统计图、交通规划图、重大项目规划图等不同内容的专业图件。

2.区域与城镇规划

城市与区域规划中要处理许多不同性质和不同特点的问题,它涉及资源、环境、人口、交通、经济、教育、文化和金融等多个地理变量和大量数据。地理信息系统的数据库管理有利于将这些数据信息归并到统一系统中,最后进行城市与区域多目标的开发和规划,包括城镇总体规划、城市建设用地适宜性评价、环境质量评价、道路交通规划、公共设施配置以及城市环境动态监测等。这些规划功能的实现,是以地理信息系统的空间搜索方法、多元信息的叠加处理、空间分析方法和网络分析功能等作为保证的。中国大、中型城市很多,根据加快中心城市的规划建设,加强城市建设决策科学化、现代化的要求,利用地理信息系统作为城市规划、管理和分析的工具,具有十分重要的意义。

3.环境灾害监测

利用GIS方法和多时相遥感数据,可以有效地用于森林火灾的预测预报、洪水灾情监测和灾情损失的估算,为救灾抢险和防洪决策提供及时准确的信息,例如据中国大兴安岭地区的研究,通过普查分析森林火灾实况,统计分析十几万个气象数据,从中筛选出气温、风速、降水、温度等气象要素、春秋两季植被生长情况和积雪覆盖程度等14个因子,用模糊数学方法建立数学模型,建立微机信息系统的多因子的综合指标森林火险预报方法,对预报火险等级的准确率可达73%以上。又如黄河三角洲地区防洪减灾信息系统,在ARC/INFO地理信息系统软件支持下,借助于大比例尺数字高程模型,加上各种专题地图,如土地利用、水系、居民点、油井、工厂排放工程设施及社会经济统计信息等,通过各种图形叠加、操作、分析等功能,可以计算出若干个泄洪区域及其面积,比较不同泄洪区域内的土地利用、房屋、财产损失等,最后得出最佳的泄洪区域,并制定整个泄洪区域内的人员撤退、财产转移和救灾物资供应等的最佳运输线路。

4.环境保护及管理

GIS技术也是进行环境评价、环境规划管理的有力工具。其内容包括:环境监测和数据收集,建立基础数据库和环境动态数据库,建立环境污染的有关模型,提供环境管理的统计数据和报表输出,环境作用分析和环境质量评价,环境信息传输和制图等。

环境管理涉及人类社会活动和经济活动的一切领域,一个大中型城市每年收集和监测的环境数据可能多达100万个,对如此大量的数据,应使其有效地为环境管理决策及其他用途服务。一个地方环境管理信息系统的功能有:为环境管理部门提供数据和信息系统存储方法——基础数据库系统;提供环境管理的数据统计、报表和图形编辑方法;建立环境污染的若干模型,为环境管理决策提供支持;提供环保部门办公软件;提供信息传输的方法和手段。

例如,上海市环境管理雅息系统具有如下主要特征:①建立了动态数据库,可存储环境监测数据(如包括污染源和环境质量)和其他有关数据(如环境标准、水文、气象等),对大多数环境管理功能来说,实现了数据共享;②面向环境质量管理,可以对环境质量状况的统计、评价、预测、规划以及其他管理提供支持;③为实现面向污染源的污染控制管理提供支持,可以实现排污收费、排污许可证制度的管理;④为便于用户使用,系统设计一个界面友好的窗口菜单系统,使用方便,可以提供不同形式的输出,包括屏幕显示、表格打印、图形绘制、磁盘输出等,还预留了远程通讯接口。

5.宏观决策

GIS利用有效的数据库,通过一系列决策模型的构建和比较分析,可为国家或区域的宏观决策提供科学依据。例如GIS支持下的土地承载力的研究,可以解决土地资源与人口容量的规划。中国在三峡地区研究中,通过利用地理信息系统和机助制图的方法等多种功能建立了环境监测系统,为三峡宏观决策提供了建库前后环境变化的数量、速度和演变趋势等可靠依据。又如,通过水土流失监测系统数据库中的水土流失强度、地质岩性、坡度及其他资源与环境的相关数据进行分析研究,利用图形叠置等功能和变化的规律模型,可以进行水土流失的预测,为水土保持方案的编制及实施生态环境治理等提供坚实的数据基础,为宏观决策提供依据。

地质信息系统技术

一、内容概述

地质信息系统(GIS),产生于20 世纪60 年代。它随着人们对自然资源和环境的规划管理工作的需要以及计算机制图技术的应用而诞生,是一种对大批量空间数据采集、存储、管理、检索、处理和综合分析并以多种形式输出结果的计算机系统。1965 年,W.L.Garrison首先提出了“地质信息系统”这一术语,开创了这一新技术的发展史。此后,美国、加拿大、英国、澳大利亚等国均投入了大量人力、物力和财力,并逐步确立了他们在这一领域里的国际领先地位(黄润秋,2001)。

二、应用范围及应用实例

1.GIS技术在地质灾害信息系统中的应用

随着人口的急剧增长,经济的迅速发展和自然资源的大量消耗,不仅生态环境恶化,而且导致自然灾害(包括地质灾害)频繁发生。美国、印度等国是世界上地质灾害较为严重的国家,地质灾害具有类型多、分布广和成灾强度高的特点。这些地质灾害大部分发生在承灾能力较低的地区,给当地的经济和社会稳定构成了严重的威胁。地质灾害是地质环境质量低劣的表现,它的频发不仅反映了自然地质环境的脆弱性,而且反映了人类工程经济活动与地质环境间矛盾的激化。要使人类工程经济活动与地质环境之间保持较为协调的关系,就必须对地质环境进行评价,以了解不同经济发展过程中区域地质环境的基本态势和变化趋势,为环境管理和城市规划等提供依据,但传统技术手段已不能完全应付迅速反应的地质灾害。地质信息系统作为当前高科技发展的产物,集图形、图像与属性数据管理、处理、分析、输入输出等功能为一体,应是当前地质环境评价与地质灾害预测的强有力工具(赵金平等,2004)。

GIS 技术的产生是计算机技术和信息化发展的共同产物。是管理和研究空间数据的技术系统。可以迅速地获取满足应用需要的信息,能以地图、图形或数据的形式表示处理的结果(曹修定等,2007)。国外尤其是发达国家在GIS应用与地质灾害研究方面已做了很多工作。从20世纪60年代至今,GIS技术的应用也从数据管理、多源数据集数字化输入和绘图输出,到DEM或DTM模型的使用,到GIS结合灾害评价模型的扩展分析,到GIS与决策支持系统(DSS)的集成,到网络GIS,逐步发展深入应用(黄润秋,2001)。

印度Roorkee大学地球科学系的R.P.Gupta和B.C.Joshi(1990)用GIS方法对喜马拉雅山麓的Ramganga Catchment地区进行滑坡灾害危险性分带。该项研究基于多源数据集,如航空像片、MSS磁带数据、MSS图像、假彩色合成图像及各种野外数据,包括地质、构造、地形、土地利用及滑坡分布。以上数据需要进行数字、图像等处理,然后解译绘制出专题平面图,包括地质图(岩性与构造)、滑坡分布图、土地利用图等。这些图件经数字化及有关数据都存储在GIS系统中,找出与滑坡灾害评价相关的因素,如滑坡活动与岩性的关系,滑坡活动与土地利用的关系,不同斜坡类型的滑坡分布情况,滑坡分布与主要断裂带的距离关系。经过统计及经验分析,引入一个滑坡危险系数(LNRF)。LNRF值越大,表示该地滑坡灾害发生的危险性越高。并且对LNRF的3个危险级别分别赋予0、1、2三个权重。考虑到滑坡的发生是多个因素综合作用的结果,故调用GIS的叠加分类模型,将各因素的权重叠加,得到综合图件,图上反映的是每个地区的权重总和。根据给定标准,即可在这张图上勾绘出滑坡灾害危险性分区图。

荷兰ITC的C.J.Van Westen和哥伦比亚IGAC的J.B.Alzate Bonilla(1990)基于GIS对山区地质灾害进行分析。他们在数据采集、整理方面做了大量工作,建立了一套完整的数据库。在此基础上,开发出了分析评价模型,如斜坡稳定性分析模型,其主要功能是计算斜坡稳定的安全系数。另外,两位学者还利用GIS所生成的数字高程模型(DEM),开发出了一部山区落石滚落速率计算模型,并据此绘出了研究区内落石速率分区图(黄润秋,2001)。

美国科罗拉多州立大学Mario Mejia-Navarro和Ellen E.Wohl(1994)在哥伦比亚的麦德林地区,用GIS进行地质灾害和风险评估(姜作勤,2008)。利用GIS对麦德林地区地质灾害进行了分析和研究,重点考虑了基岩和地表地质条件、构造地质条件、气候、地形、地貌单元及其形成作用、土地利用和水文条件等因素。根据各因素的组成成分和灾害之间的对应关系,把每一种因素细分为不同范畴等级,借助于GIS软件(GRASS)的空间信息存储、缓冲区分析、DEM模型及叠加分析等功能,对有关滑坡、洪水和河岸侵蚀等灾害倾向地区进行了灾害分析,并对某一具体事件各构成因素的脆弱性进行评价。

同样是美国科罗拉多州立大学Mario Mejia-Navarro博士后等人(1996)将GIS技术与决策支持系统(DSS)结合,利用GIS(主要是地质资源分析系统GRASS软件)及工程数学模型建立了自然灾害及风险评估的决策支持系统并应用在科罗拉多州的Glenwood Springs地区(姜作勤等,2001)。应用GIS建立指标数据库,并建立基于GIS的多个控制变量的权重关系式。对泥石流、洪水、地面沉降、由风引起的火灾等灾种进行了灾害敏感性分析、脆弱性分析及风险评估,辅助政府部门做出决策。

美国地质调查局(USGS)已把加强城市地质灾害研究列为21世纪初的重要工作,借助GIS编制美国主要城市地区多种灾害的数字化图件,这种做法与西欧国家的城市地质工作的总趋势一致。其中,美国科罗拉多州格伦伍德斯普林市的城市地质灾害评价项目最具代表性。由于该市位于山区河谷地区,崩滑流地质灾害制约着城市的发展,为此,城市规划部门委托科罗拉多州立大学,开展了GIS地质灾害易损性和风险评价编图研究,最终按14种土地利用适宜性等级,对评价区进行了土地利用区划,圈出了未来城市发展的适宜地段和高风险区,在此基础上建立了城市整体化决策支持系统。

综上所述,可以看出,国外尤其是发达国家将 GIS 应用于地质灾害研究起步较早(表1),研究程度已远远超过我们,此方面的应用也随着GIS技术的自身发展而深入(黄润秋,2001)。

2.GIS在地质矿产勘查中的应用

地质信息系统与现代地球及其相关科学日益增长的需求相适应,以处理地球上任何具有空间方位的海量信息为特征,具定量、定时、定位等优点,近10年来已在地质矿产勘查中得到广泛应用。一个区域各种地质资料(图形、图像、文字、逻辑、数值)的GIS分析实际上代表该区域现阶段较为客观的总认识。目前,野外收集资料、数据建库、GIS分析等尚存在规范化、标准化等问题,GIS本身解决诸多专业性较强地质问题的能力亦不足。但GIS的进一步发展与完善必将使地质矿产勘查进入一个数字化的新时期(周军等,2002)。

GIS因解决地质问题而产生,其雏形可以追溯到20 世纪60 年代。加拿大测量学家R.F.Tomlinson首先于1963年提出地质信息系统这一术语,建成世界上第一个GIS即加拿大GIS(CGIS)一并应用于资源管理与规划。1970~1976年间美国联邦地质调查局建成50多个信息系统并进行综合地质研究,德国在1986 年建成DASCH系统,瑞典、日本等国也陆续建有自己的GIS。GIS的发展与计算机科学的高速发展并行,主要发生在过去的20年中,而近10年来发展更快(周军等,2002)。

表1 国外GIS在地质环境与地质灾害研究中的应用

GIS因解决地质问题而产生,其雏形可以追溯到20 世纪60 年代。加拿大测量学家R.F.Tomlinson首先于1963年提出地质信息系统这一术语,建成世界上第一个GIS即加拿大GIS(CGIS)一并应用于资源管理与规划。1970~1976年间美国联邦地质调查局建成50多个信息系统并进行综合地质研究,德国在1986 年建成DASCH系统,瑞典、日本等国也陆续建有自己的GIS。GIS的发展与计算机科学的高速发展并行,主要发生在过去的20年中,而近10年来发展更快(周军等,2002)。

ArcInfo与ArcView GIS是当前最流行的两个软件包,为美国ESRI(Environmental Systems Research Institute,Inc.)的重要产品,被许多国家官方确定为国土资源、地质、环境等管理、研究的主要地质信息系统。ESRI始建于1969年,由Jack Dansermond和Laura Dangermond用自己平时积蓄的1100美元起步,经过20世纪70年代的艰苦奋斗,1981年推出新型ArcInfo,1986年微机版的PC ArcInfo投入市场,1991 年又一力作ArcView GIS问世。1981年ESRI在其Redlands总部召开首次用户会议,仅18人到场,而1998年的用户大会有来自90个国家的8000多位代表。

ESRI的发展史反映了GIS从无到有、从弱到强、迅速成长壮大的发展历程,也从一个侧面显示出GIS巨大的市场潜力和难以估量的应用价值。

据悉,1995年市场上有报价的GIS 软件已达上千种,但主要占据市场的不过10 余种。除上述提到的ArcInfo与ArcView GIS外,国外的GIS代表作还有MapInfo、ErMapper、Idrisi Endas、Erdas、Genamap、Spans、Tigris等。

GIS已在地质矿产勘查中得到广泛应用,并取得许多瞩目成果。美国、加拿大、澳大利亚早在1985~1989年就将其应用于地质矿产调查和填图。目前,澳大利亚开始利用笔记本电脑以数字形式采集野外地质数据,建立有关数据库,借助ArcInfo与ArcViewGIS编制第二代地质图件。

三、资料来源

曹修定,阮俊等.2007.GIS技术在地质灾害信息系统中的应用.中国地质灾害与防治学报,18(3):112~115

黄润秋.2001.面向21世纪地质环境管理及地质灾害评价的信息技术.国土资源科技管理,18:30~34

姜作勤.2008.国内外区域地质调查全过程信息化的现状与特点.地质通报,27(7):956~964

姜作勤,张明华.2001.野外地质数据采集信息化所涉及的主要技术及其进展.中国地质,28(2):36~42

赵金平,焦述强.2004.基于GIS的地质环境评价在国外的研究现状.南通工学院学报(自然科学版),3(2):46~50

周军,梁云.2002.地理信息系统及其在地质矿产勘查中的应用.西安工程学院学报,24(2):47~50

gis是什么地理技术

其他信息:

gis是指Geographic Information Science,即地理信息科学专业。

地理信息科学是中国普通高等学校本科专业,专业代码是070504,授予学位理学学士,修业年限四年。地理信息科学主要研究地理学基础知识、地理信息系统、数据库原理、遥感原理与技术等,运用3S(GPSGISRS)技术,将地球系统内部的物质进行信息化,例如:根据城市地貌制成手机查询的电子地图、远程遥控无人机、实时定位导航等。

材料补充:

地理信息科学专业的课程主要有:《摄影测量学》、《GIS空间分析》、《GIS设计与开发》、《遥感导论》、《自然地理学》、《计量地理学》、《遥感数字图像处理》、《卫星导航定位原理与应用》。该专业就业方向有矿产、工程类企业中的地质勘查、摄影测量、生产管理、技术开发等岗位,还有IT类企业的项目规划设计、项目实施开发、GIS设计与开发、遥感技术、无人机岗位,建筑类企业中的数字城市建设、城镇规划建设。

 石漠化遥感调查与GIS分析

贵州喀斯特地区受人类活动影响,特别是由于土地资源利用的不合理,不同区域出现了一系列的环境问题,一些地区存在的石漠化现象表现得尤为突出。通过应用多波段、多平台的遥感信息,在野外调研基础上与GIS技术支持下,对图像进行解译、编辑处理,制作石漠化动态图,为喀斯特地区生态治理及环境建设等方面提供依据。主要包括石漠化工作的软硬件环境,以胜任贵州省石漠化遥感调查工作和石漠化数据集成工作为标准,由人机交互判读系统和数据集成系统构成。

一、判读系统配置及资料收集

1。系统配置

(1)人机交互图像判读系统的硬件配置:石漠化专题数据采集以陆地卫星数字图像作为主要信息源,主要依靠高性能微机组成图像判读系统,其建议配置为:

主频:266MHz以上内存:64MB以 上

硬盘:4.3GB以上驱动器:光驱、3.5吋软盘驱动器

显示内存:4MB以上显示器:15时以上

显示分辨率:800×600以上颜色分辨率:24位或是32位真彩色

(2)人机交互图像判读系统的软件配置:操作系统为WINDOWS95、WINIDOWS98,采用ENVI3.1、ARCVIEW3.0、ARC/INFO以及MAPGIS等作为人机交互判读及数据处理的软件。其特点具有栅格图像与矢量图形相结合的功能;具有多种数据格式交换功能,能方便地实现与ARC/INFO的数据交换;各种工具利于操作。

(3)扫描与图像处理软件及成果输出设备:采用Windows98操作平台下的Photo-shop5.0或其他图像扫描处理软件及MAPGIS、ARCVIEW等GIS软件作为图像栅格矢最转换,数据格式转换要求采用Arc/info软件包进行交换。需要的数字化输入设备有:A0幅面扫描仪或数字化仪。成果的输出采用MAPGIS、ARCVIEW等GIS软件进行图像图形编辑,需要的输出设备有:A1幅面以上的彩色喷墨绘图机、A4幅面以上的激光打印机和喷墨打印机等,同时,采用可读写光驱或其他存储设备进行数据备份保存。

2.遥感图像选择

喀斯特石漠化的遥感解译工作,数据影像文件是2000年度为主的(1:1()万)TM4、TM3、TM2三波段假彩色合成数字影像(照片3-1),其光谱效应如表3-3所示,图像已经根据县级行政区域完成分景之间的镶嵌,并进行了几何纠正和统一的投影处理,叠加了以县为基本单元的行政界限。图像文件已经叠加有全国1/10万标准分幅地形图的4个图廓点,作为判读分析后数据编辑的控制点,每一个图廓点必须在判读勾绘时标描,并进入后期图形编辑过程。

表3-3 TM(4、3、2)光谱效应

图像处理和几何精度校正采用最小二乘法计算。校正方程根据控制点选取情况采用2次到3次多项式。像元重采样采用最近邻点法或双线性插值法。校正后每个像元的分辨率为30m。生成县级图像文件和行政界线数据,其投影方式为等面积割圆锥投影。采用全国统一的中央经线和双标准纬线。中央经线为东经105°,双标准纬线为北纬25。和北纬47°,坐标原点为(105,0)。由于贵州省自然环境复杂多样的特点,在TM图像的季相确定时,既要注意所在调查区域内TM信息瞬时覆盖时本身的质量(如含云量度<10%等技术指标),又必须顾及不同区域的时效性季相差异选择。根据现势性要求,获取2000年陆地卫星TM图像,对部分数据获取困难地区采用其他图像。根据瞬时状态下最大限度使图像上尽可能丰富地反映地表信息的原则,选择秋冬季图像;如果遇到不可抗拒的客观原因(如天气条件等),可适当选择提前或滞后一两个覆盖周期的图像。

3.资料收集及野外作业

选择最新版本的比例尺为1:10万或1:5万地形图及1:20万水文地质图,负责收集与石漠化遥感调查有关的图件和文字资料。为了提高影像的信息可解译性和保证成果质量,广泛收集整理现有的基础研究成果及各种比例尺的地质图、地貌图、植被图、土壤图、沙漠化图、石漠化图、坡度图、土地利用图、中国石漠化区划图和流域界线图等专业性图件,水文气象观测资料,包括水文站点的水文泥沙资料、实验站的石漠化观测资料、淤地坝的泥沙淤积资料及其他有关研究报告。同时,通过对工作区域外业补充调查,建立石漠化强度分级遥感解译标志,拍摄相应的野外实况照片,用于石漠化强度判读分析。

二、喀斯特石漠化遥感调查技术路线

项目利用遥感和地理信息系统作为技术手段,利用多学科结合的优势进行综合性的相关分析,以统一的标准对石漠化现象及成因、对策进行研究,技术方法严密、客观,避免了传统方法进行这类大面积研究中人力、物力投入过大,标准难以控制等带来的弊病。

“石漠化”是喀斯特山区所特有的一类现象。在中国南方高温多雨的条件下,自然的石漠化并不存在,即使在土层覆盖少的地区,也发育高大的原生森林。“石漠化”的出现是自然、人为因素共同作用的结果。石漠化产生的自然条件:一是要有纯度较高的碳酸盐岩(尤其是石灰岩),二是要有坡度较大的地形条件。虽满足上述两个条件,但在纯天然状态下,高温多雨的气候仍可发育高大的森林,这已为荔波茂兰等地的情况证实。只有在人为反复砍伐植被或陡坡开垦的条件下,引起植被覆盖层丧失、石漠化发展,其结果最终导致石漠化。引起石漠化的主要原因是人为因素,而植被条件决定着石漠化的级别和程度因此,只要结合岩性岩组图、地形图,解译植被覆盖稀疏的情况,结合野外调查得出的相关关系和分布规律,就可在TM影像上直接解译石漠化土地。

TM影像的分辨率为地面距离30m,计算机上人机交互解译,可在任意放大和增强的条件下进行。因此可以达到较高的精度,满足大比例尺制图精度要求。裸岩由于其特殊的光谱效应,可以在TM影像上得到很好地表现。还可利用遥感影像处理软件中的工具,如植被指数及各种增强方法,最大限度地挖掘裸露碳酸盐岩信息,给予准确地解译。

采用目前最先进的监测、评价技术及以地理信息系统技术为支撑,以遥感资料为主要信息源,结合由地形图派生的坡度图,由区域地质图派生出喀斯特与非喀斯特及石山半石山的石漠化背景图。采用植被覆盖、土壤背景、地面坡度等决定石漠化的主要因素,参考降水量、降雨强度等有关因素建立石漠化定量分析模型,应用现代建模技术进行石漠化强度评价和调查制图;结合行政区划,得到各地(市)、县(市)石漠化评价图和数据(图3-1)。

图3-1 喀斯特石漠化遥感调查技术路线

三、石漠化遥感调查工作流程

通过技术路线,最后确立具体工作流程(图3-2),其步骤为:土地利用图转换成土壤侵蚀图、图斑识别方法、图斑抠挖及分割、土壤侵蚀图的结果统计分析等。

1.解译的图斑识别方法

(1)直接判定法:在遥感工作软件支持下,对影像的色调、形状、位置、大小、阴影、纹理及其他标志,非常明确的地物进行直接的判读,如河流、植被及城镇等(表3-4)。

表3-4 直接判定地物对应影像特征表

(2)对比分析法:对卫星图像不同波段、图像进行对比分析以及结合实地影像预判结果,对于不容易判别的岩性和坡度,则要结合地质图和地形图来识别,坡度可由地形图得到,从而建立卫星图像与实地地物和现象的对应关系,使判读成果更为准确。

图3-2 喀斯特石漠化遥感解译工作流程图

(3)逻辑推理法:基于卫星图像的特点,卫星图像的判读更多的是应用地学规律的相关分析和实际经验,进行逻辑推理法的判读,即借助各种地物和自然现象间的内在联系,结合图像上表现出的特征,用专业知识的逻辑推理法,判定某一地物和现象的存在及其属性。例如:从水系分布的格局、密度,可推断出有关岩性及地貌类型等方面的信息。从植被类型分布,可推断出土壤类型等方面的信息。

(4)机上图斑处理法:对比较大的多边形首先用多边形抠挖的方法,建立横跨该多边形的一个或多个多边形,并将文件送入Arc/Info中进行拓扑运算,即建立多边形之间的空间相对关系,运算完成后,原来的大多边形已经被分割成小的多个多边形,在这种情况下,再用Arcview提供的多边形分割工具进行分割就能极大地提高工作效率,具体作法是直接操作鼠标,沿影像特征的边缘准确绘出地类界(界线应严格封闭)。根据表3-1,依照TM影像的特征,结合地质图、地形图赋予图斑相应的侵蚀类型属性,逐块完成石漠化各级别的判读和进行准确的定位(1)。完成后,再进行一次拓扑运算,便生成了新的石漠化强度图(2)。

2.石漠化图的结果统计分析

对已经进行了多边形分割抠挖、分割合并的石漠化图(2),进行石漠化分布程度等的再检验。具体作法是对每级别石漠化图斑设置成透明,然后依据影像特征和地形图、地质图等相关信息对其进行鉴定、校正。同时检查图斑定性和定位是否准确、作业方法是否符合有关规定、矢量图内图斑弧段是否封闭、图斑是否漏号或重号以及是否建立图形的拓扑关系等等,直至评估满意产生石漠化图(3),从而统计出空间数据,利用GIS数据处理进行空间分析,并结合人口区域经济等指标,分析贵州喀斯特地区石漠化与经济贫困的关系。


标题名称:gis技术地质监测 gis在地质学领域的发展方向
URL地址:http://gzruizhi.cn/article/dddiogd.html

其他资讯