189 8069 5689

linux下c++怎么集成LightGBM模型进行预测-创新互联

这篇文章主要介绍“linux下c++怎么集成LightGBM模型进行预测”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“linux下c++怎么集成LightGBM模型进行预测”文章能帮助大家解决问题。

创新互联主要从事网页设计、PC网站建设(电脑版网站建设)、wap网站建设(手机版网站建设)、成都响应式网站建设公司、程序开发、网站优化、微网站、微信小程序开发等,凭借多年来在互联网的打拼,我们在互联网网站建设行业积累了丰富的成都网站制作、网站设计、网站设计、网络营销经验,集策划、开发、设计、营销、管理等多方位专业化运作于一体。

1 相关材料

1.1 安装包

(1)lightGBM源码 提取码:qab2
(2)cmake 提取码:3sdn
(3)环境:centos7

1.2 前提准备

操作系统已经按照g++和gcc编译工具,可使用命令进行安装
yum install gcc
yum install gcc-c++

2 过程

本次操作目录均在/root/test,如下图所示:
linux下c++怎么集成LightGBM模型进行预测

2.1 解压安装cmake

(1) 输入命令:tar -zxvf cmake-3.18.4.tar.gz 解压cmake.tar.gz
(2) 进入cmake-3.18.4文件夹并执行./configure命令
按照过程中如果报了“Could not find OpenSSL. Install an OpenSSL development package or”,需要先执行yum instal openssl和yum install openssl-devel再执行./configure命令
linux下c++怎么集成LightGBM模型进行预测
(3) 执行命令gmake
linux下c++怎么集成LightGBM模型进行预测
(4) 执行命令确认cmake的版本,确认cmake是否成功安装

2.2 解压编译lightGBM

2.3 lightGBM模型生成

2.3.1 c++生成lgb模型
2.3.2 python生成lgb模型

2.4 c++集成lightGBM预测

#include #include #include void predict(std::vector &row){std::string pred_result = "";int temp;int p = 1;BoosterHandle handle;temp = LGBM_BoosterCreateFromModelfile("models/3_300_gbm.txt", &p, &handle);std::cout << "load result value is " << temp << std::endl;// std::vector row = {0.07946399999999999, 0.9537260000000001, 0.9621209999999999, 0.976303, 7.0, 3.0};for (auto value : row)std::cout << value << ",";std::cout << std::endl;void *in_p = static_cast(row.data());std::vector out(1, 0);double *out_result = static_cast(out.data());int64_t out_len;int res = LGBM_BoosterPredictForMat(handle, in_p, C_API_DTYPE_FLOAT32, 1, 6, 1, C_API_PREDICT_NORMAL, 0, -1, "None", &out_len, out_result);std::cout << "file predict result is:" << res << std::endl;std::cout << "row predict result size is " << out.size() << " value is " << out[0] << std::endl;}int main(){std::vector row = {0.07946399999999999, 0.9537260000000001, 0.9621209999999999, 0.976303, 7.0, 3.0};predict(row);std::cout << std::endl;std::vector row1 = {0.910457, 0.692459, 0.8338110000000001, 0.78886, 14.0, 10.0};predict(row1);std::cout << "Ok complete!" << std::endl;return 0;}// g++ -g -Wall -std=c++11 test.cpp -l_lightgbm -Wl,-R /usr/local/lib -o test// g++ -g -Wall -std=c++11 test.cpp -l_lightgbm -Wl,-R /root/moead/models -L/ydq/moead/models -I/root/moead/models/include -o test

关于“linux下c++怎么集成LightGBM模型进行预测”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注创新互联行业资讯频道,小编每天都会为大家更新不同的知识点。


分享标题:linux下c++怎么集成LightGBM模型进行预测-创新互联
地址分享:http://gzruizhi.cn/article/djpije.html

其他资讯