189 8069 5689

广度优先搜索代码java 广度优先搜索代码

广度优先搜索

这个是很复杂的

在宾县等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供成都网站建设、网站制作 网站设计制作按需网站设计,公司网站建设,企业网站建设,高端网站设计,成都全网营销推广,成都外贸网站建设公司,宾县网站建设费用合理。

你可以百度这个算法

然后套进去写代码

LeetCode 力扣官方题解 - 1020. 飞地的数量

题目描述

给你一个大小为 m x n 的二进制矩阵 grid,其中 0 表示一个海洋单元格、1 表示一个陆地单元格。

一次 移动 是指从一个陆地单元格走到另一个相邻(上、下、左、右)的陆地单元格或跨过 grid 的边界。

返回网格中 无法 在任意次数的移动中离开网格边界的陆地单元格的数量。

示例 1:

示例 2:

提示:

根据飞地的定义,如果从一个陆地单元格出发无法移动到网格边界,则这个陆地单元格是飞地。因此可以将所有陆地单元格分成两类:第一类陆地单元格和网格边界相连,这些陆地单元格不是飞地;第二类陆地单元格不和网格边界相连,这些陆地单元格是飞地。

我们可以从网格边界上的每个陆地单元格开始深度优先搜索,遍历完边界之后,所有和网格边界相连的陆地单元格就都被访问过了。然后遍历整个网格,如果网格中的一个陆地单元格没有被访问过,则该陆地单元格不和网格的边界相连,是飞地。

代码实现时,由于网格边界上的单元格一定不是飞地,因此遍历网格统计飞地的数量时只需要遍历不在网格边界上的单元格。

代码

Java

C#

C++

C

Python3

Golang

JavaScript

复杂度分析

也可以通过广度优先搜索判断每个陆地单元格是否和网格边界相连。

首先从网格边界上的每个陆地单元格开始广度优先搜索,访问所有和网格边界相连的陆地单元格,然后遍历整个网格,统计飞地的数量。

代码

Java

C#

C++

C

Python3

Golang

JavaScript

复杂度分析

除了深度优先搜索和广度优先搜索的方法以外,也可以使用并查集判断每个陆地单元格是否和网格边界相连。

并查集的核心思想是计算网格中的每个陆地单元格所在的连通分量。对于网格边界上的每个陆地单元格,其所在的连通分量中的所有陆地单元格都不是飞地。如果一个陆地单元格所在的连通分量不同于任何一个网格边界上的陆地单元格所在的连通分量,则该陆地单元格是飞地。

并查集的做法是,遍历整个网格,对于网格中的每个陆地单元格,将其与所有相邻的陆地单元格做合并操作。由于需要判断每个陆地单元格所在的连通分量是否和网格边界相连,因此并查集还需要记录每个单元格是否和网格边界相连的信息,在合并操作时更新该信息。

在遍历网格完成并查集的合并操作之后,再次遍历整个网格,通过并查集中的信息判断每个陆地单元格是否和网格边界相连,统计飞地的数量。

代码

Java

C#

C++

C

Python3

Golang

JavaScript

复杂度分析

BY /

本文作者:力扣

java如何实现 深度优先 广度优先

下面是我修改了滴源码,是基于一张简单的地图,在地图上搜索目的节点,依次用深度优先、广度优先、Dijkstra算法实现。

import java.util.ArrayList;

import java.util.HashMap;

import java.util.LinkedList;

import java.util.PriorityQueue;

import java.util.Stack;

/**

*

* @author yinzhuo

*

*/

public class Arithmatic {

boolean flag = true;

// 一张地图

static int[][] map = new int[][]// 地图数组

{

{ 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },

{ 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },

{ 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0 },

{ 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0 },

{ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0 },

{ 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0 },

{ 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0 },

{ 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },

{ 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },

{ 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0 },

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0 },

{ 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0 },

{ 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0 },

{ 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0 },

{ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },

{ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },

{ 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0 },

{ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0 },

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0 },

{ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0 },

{ 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },

{ 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },

{ 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } };

Java连连看代码。 广度优先搜索算法实现,最小拐弯数,高手留下qq。

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class lianliankan implements ActionListener

{

JFrame mainFrame; //主面板

Container thisContainer;

JPanel centerPanel,southPanel,northPanel; //子面板

JButton diamondsButton[][] = new JButton[6][5];//游戏按钮数组

JButton exitButton,resetButton,newlyButton; //退出,重列,重新开始按钮 JLabel fractionLable=new JLabel("0"); //分数标签

JButton firstButton,secondButton; //分别记录两次被选中的按钮

int grid[][] = new int[8][7];//储存游戏按钮位置

static boolean pressInformation=false; //判断是否有按钮被选中

int x0=0,y0=0,x=0,y=0,fristMsg=0,secondMsg=0,validateLV; //游戏按钮的位置坐标 int i,j,k,n;//消除方法控制

public void init(){

mainFrame=new JFrame("JKJ连连看");

thisContainer = mainFrame.getContentPane();

thisContainer.setLayout(new BorderLayout());

centerPanel=new JPanel();

southPanel=new JPanel();

northPanel=new JPanel();

thisContainer.add(centerPanel,"Center");

thisContainer.add(southPanel,"South");

thisContainer.add(northPanel,"North");

centerPanel.setLayout(new GridLayout(6,5));

for(int cols = 0;cols 6;cols++){

for(int rows = 0;rows 5;rows++ ){

diamondsButton[cols][rows]=new JButton(String.valueOf(grid[cols+1][rows+1])); diamondsButton[cols][rows].addActionListener(this);

centerPanel.add(diamondsButton[cols][rows]);

}

}

exitButton=new JButton("退出");

exitButton.addActionListener(this);

resetButton=new JButton("重列");

resetButton.addActionListener(this);

newlyButton=new JButton("再来一局");

newlyButton.addActionListener(this);

southPanel.add(exitButton);

southPanel.add(resetButton);

1/8页

southPanel.add(newlyButton);

fractionLable.setText(String.valueOf(Integer.parseInt(fractionLable.getText())));

northPanel.add(fractionLable);

mainFrame.setBounds(280,100,500,450);

mainFrame.setVisible(true);

}

public void randomBuild() {

int randoms,cols,rows;

for(int twins=1;twins=15;twins++) {

randoms=(int)(Math.random()*25+1);

for(int alike=1;alike=2;alike++) {

cols=(int)(Math.random()*6+1);

rows=(int)(Math.random()*5+1);

while(grid[cols][rows]!=0) {

cols=(int)(Math.random()*6+1);

rows=

邻接表做深度优先遍历和广度优先遍历的代码

3、广度优先搜索算法

(1)邻接表表示图的广度优先搜索算法

void BFS(ALGraph*G,int k)

{// 以vk为源点对用邻接表表示的图G进行广度优先搜索

int i;

CirQueue Q; //须将队列定义中DataType改为int

EdgeNode *p;

InitQueue(Q);//队列初始化

//访问源点vk

printf("visit vertex:%e",G-adjlist[k].vertex);

visited[k]=TRUE;

EnQueue(Q,k);//vk已访问,将其人队。(实际上是将其序号人队)

while(!QueueEmpty(Q)){//队非空则执行

i=DeQueue(Q); //相当于vi出队

p=G-adjlist[i].firstedge; //取vi的边表头指针

while(p){//依次搜索vi的邻接点vj(令p-adjvex=j)

if(!visited[p-adivex]){ //若vj未访问过

printf("visitvertex:%c",C-adjlistlp-adjvex].vertex); //访问vj

visited[p-adjvex]=TRUE;

EnQueue(Q,p-adjvex);//访问过的vj人队

}//endif

p=p-next;//找vi的下一邻接点

}//endwhile

}//endwhile

}//end of BFS

(2)邻接矩阵表示的图的广度优先搜索算法

void BFSM(MGraph *G,int k)

{以vk为源点对用邻接矩阵表示的图G进行广度优先搜索

int i,j;

CirQueue Q;

InitQueue(Q);

printf("visit vertex:%c",G-vexs[k]); //访问源点vk

visited[k]=TRUE;

EnQueue(Q,k);

while(!QueueEmpty(Q)){

i=DeQueue(Q); //vi出队

for(j=0;jG-n;j++)//依次搜索vi的邻接点vj

if(G-edges[i][j]==1!visited[j]){//vi未访问

printf("visit vertex:%c",G-vexs[j]);//访问vi

visited[j]=TRUE;

EnQueue(Q,j);//访问过的vi人队

}

}//endwhile

}//BFSM


新闻标题:广度优先搜索代码java 广度优先搜索代码
网页地址:http://gzruizhi.cn/article/docgoei.html

其他资讯