189 8069 5689

nosql中数据管理策略,nosql数据库技术实战 pdf

如何玩转NoSQL数据库

何玩转 NoSQL数据库作者:IT专家中国 Weather公司CIO Bryson Koehler整理MongoDBRiakCassandra等NoSQL数据库特性指其重要特性NoSQL限制住 Weather公司致力于气报告气预报业务其并缺乏数据缺乏数据管理工具需要三种同NoSQL数据库 近我向Weather 公司CIO Bryson Koehler提疑问除公司CIO,Bryson Koehler其业务单元孵化者,包括Weather ChannelWeatherFXWeather UndergroundIntellicast等Weather公司每获取处理着约二0万亿字节数据外提供前全球气状况并航空公司紧中国服务货运商公用事业保险及线气中国站气应用程序用户提供气预报服务每需求增加数十亿气数据请求并且预期响应间要一0毫秒左右 RiakWeather 公司台NoSQL数据库服务于公司事务性存储公用中国络(SUN)数据获取平台运行亚马逊中国络服务(AWS)用区域并每一5频率捕获超二0亿气象数据信息所Riak具明确处理规模该公司使用Cassandra及新近添加MongoDB数据库Weather中国 IOSAndroid移应用程序服务 Weather 公司使用同产品Koehler解释说同工具同优势 Cassandra服务于Weather 公司及全球消费者使用第三气应用API数据:我数据发平台每秒处理数十万事务我发现Cassandra用于全球发数据棒解决案并且[数据库]读取面体现高用性 本质全球各消费者所使用数据服务包括Weather 公司第三气应用程序 MongoDB提供Weather中国中国站移应用程序间层缓存功能:离我核API我没全部Weather中国内容所MongoDB容器发站Weather中国及AndroidiOS移应用程序服务Mongo处些处基于其内建JSON格式及灵性 Riak用于消费气象数据观测包括自世界各图片视频等:我喜Riak其优秀数据摄取能力且种全球布式式实现于全球布式平台获取数据入站式数据库真靠选择 我曾听说DatastaxBashoCouchbase高管贬低MongoDB扩展性MongoDB指向规模部署Facebook超二00万台移设备应用程序提供支持eHarmony公司MongDB每处理着数十亿潜比赛预约据Koehle所述MongoDBWeather中国Weather中国移应用程序处理着每十亿交易毫疑问通配置部署Mongo处理批量交易数据 尽管Koehler承认乐于看MongoDB继续使全球集群位置[功能]更加缝化且易于使用 些属于全球性布式集群复制负载平衡CassandraRiak众所周知功能 规模讨论角度看少公司达Weather公司经营规模易于发架构灵性JSON数据处理使MongoDB世界流行NoSQL数据库微软IBM都进行MongoDB模仿微软Azure DocumentDBIBM CloudantCassandraRiak Weather公司三NoSQL标准降低至两程巩固Koehler说公司没准备做 由于我构造由许同数据解决案组中国状结构我目前环境已于复杂说我希望给团队些自由空间让我解所选择利弊看些整合 候迁移件难事关于NoSQL数据库重要事情困其 Koehler说架构编码确数据库迁移另并难随着模式自由及数据转存技术发展论前者key-value存储或其形式转储数据都十容易 特定产品进程自定义编码复杂存储程已经复返Koehler说关于结构化编码确需要考虑?做避免特殊供应商提供工具功能能让身陷其举亚马逊中国络服务(AWS)消息服务例 必让服务云运行解释说部署自RabbitMQ环境陷于其所原先部署AWS 应用程序转部署谷歌计算云服务论数据平台存储环境或云计算环境都要别让自局限仅由供应商提供范围空间内 转

创新互联自2013年创立以来,先为巴南等服务建站,巴南等地企业,进行企业商务咨询服务。为巴南企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。

大数据时代数据管理方式研究

大数据时代数据管理方式研究

1数据管理技术的回顾

数据管理技术主要经历了人工管理阶段、文件系统阶段和数据库系统阶段。随着数据应用领域的不断扩展,数据管理所处的环境也越来越复杂,目前广泛流行的数据库技术开始暴露出许多弱点,面临着许多新的挑战。

1.1 人工管理阶段

20 世纪 50 年代中期,计算机主要用于科学计算。当时没有磁盘等直接存取设备,只有纸带、卡片、磁带等外存,也没有操作系统和管理数据的专门软件。该阶段管理的数据不保存、由应用程序管理数据、数据不共享和数据不具有独立性等特点。

1.2 文件系统阶段

20 世纪 50 年代后期到 60 年代中期,随着计算机硬件和软件的发展,磁盘、磁鼓等直接存取设备开始普及,这一时期的数据处理系统是把计算机中的数据组织成相互独立的被命名的数据文件,并可按文件的名字来进行访问,对文件中的记录进行存取的数据管理技术。数据可以长期保存在计算机外存上,可以对数据进行反复处理,并支持文件的查询、修改、插入和删除等操作。其数据面向特定的应用程序,因此,数据共享性、独立性差,且冗余度大,管理和维护的代价也很大。

1.3数据库阶段

20 世纪 60 年代后期以来,计算机性能得到进一步提高,更重要的是出现了大容量磁盘,存储容量大大增加且价格下降。在此基础上,才有可能克服文件系统管理数据时的不足,而满足和解决实际应用中多个用户、多个应用程序共享数据的要求,从而使数据能为尽可能多的应用程序服务,这就出现了数据库这样的数据管理技术。数据库的特点是数据不再只针对某一个特定的应用,而是面向全组织,具有整体的结构性,共享性高,冗余度减小,具有一定的程序与数据之间的独立性,并且对数据进行统一的控制。

2大数据时代的数据管理技术

大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据有 3 个 V,一是大量化(Volume),数据量是持续快速增加的,从 TB级别,跃升到 PB 级别;二是多样化(Variety),数据类型多样化,结构化数据已被视为小菜一碟,图片、音频、视频等非结构化数据正以传统结构化数据增长的两倍速快速创建;三是快速化 (Velocity),数据生成速度快,也就需要快速的处理能力,因此,产生了“1 秒定律”,就是说一般要在秒级时间范围内给出分析结果,时间太长就失去价值了,这个速度要求是大数据处理技术和传统的数据挖掘技术最大的区别。

2.1 关系型数据库(RDBMS)

20 世纪 70 年代初,IBM 工程师 Codd 发表了著名的论文“A Relational Model of Data for Large Shared DataBanks”,标志着关系数据库时代来临。关系数据库的理论基础是关系模型,是借助于集合代数等数学概念和方法来处理数据库中的数据,现实世界中的实体以及实体之间的联系非常容易用关系模型来表示。容易理解的模型、容易掌握的查询语言、高效的优化器、成熟的技术和产品,使得关系数据库占据了数据库市场的绝对的统治地位。随着互联网 web2.0 网站的兴起,半结构化和非结构化数据的大量涌现,传统的关系数据库在应付 web2.0 网站特别是超大规模和高并发的 SNS(全称 Social Networking Services,即社会性网络服务) 类型的 web2.0 纯动态网站已经显得力不从心,暴露了很多难以克服的问题。

2.2 noSQL数据库

顺应时代发展的需要产生了 noSQL数据库技术,其主要特点是采用与关系模型不同的数据模型,当前热门的 noSQL数据库系统可以说是蓬勃发展、异军突起,很多公司都热情追捧之,如:由 Google 公司提出的 Big Table 和 MapReduce 以及 IBM 公司提出的 Lotus Notes 等。不管是那个公司的 noSQL数据库都围绕着大数据的 3 个 V,目的就是解决大数据的 3个 V 问题。因此,在设计 noSQL 时往往考虑以下几个原则,首先,采用横向扩展的方式,通过并行处理技术对数据进行划分并进行并行处理,以获得高速的读写速度;其次,解决数据类型从以结构化数据为主转向结构化、半结构化、非结构化三者的融合的问题;再次,放松对数据的 ACID 一致性约束,允许数据暂时出现不一致的情况,接受最终一致性;最后,对各个分区数据进行备份(一般是 3 份),应对节点失败的状况等。

对数据的应用可以分为分析型应用和操作型应用,分析型应用主要是指对大量数据进行分类、聚集、汇总,最后获得数据量相对小的分析结果;操作型应用主要是指对数据进行增加、删除、修改和查询以及简单的汇总操作,涉及的数据量一般比较少,事务执行时间一般比较短。目前数据库可分为关系数据库和 noSQL数据库,根据数据应用的要求,再结合目前数据库的种类,所以目前数据库管理方式主要有以下 4 类。

(1)面向操作型的关系数据库技术。

首先,传统数据库厂商提供的基于行存储的关系数据库系统,如 DB2、Oracle、SQL Server 等,以其高度的一致性、精确性、系统可恢复性,在事务处理方面仍然是核心引擎。其次,面向实时计算的内存数据库系统,如 Hana、Timesten、Altibase 等通过把对数据并发控制、查询和恢复等操作控制在内存内部进行,所以获得了非常高的性能,在很多特定领域如电信、证券、网管等得到普遍应用。另外,以 VoltDB、Clustrix 和NuoDB 为代表的 new SQL 宣称能够在保持 ACDI 特性的同时提高了事务处理性能 50 倍 ~60 倍。

(2)面向分析型的关系数据库技术。

首先,TeraData 是数据仓库领域的领头羊,Teradata 在整体上是按 Shared Nothing 架构体系进行组织的,定位就是大型数据仓库系统,支持较高的扩展性。其次,面向分析型应用,列存储数据库的研究形成了另一个重要的潮流。列存储数据库以其高效的压缩、更高的 I/O 效率等特点,在分析型应用领域获得了比行存储数据库高得多的性能。如:MonetDB 和 Vertica是一个典型的基于列存储技术的数据库系统。

(3)面向操作型的 noSQL 技术。

有些操作型应用不受 ACID 高度一致性约束,但对大数据处理需要处理的数据量非常大,对速度性能要求也非常高,这样就必须依靠大规模集群的并行处理能力来实现数据处理,弱一致性或最终一致性就可以了。这时,操作型 noSQL数据库的优点就可以发挥的淋漓尽致了。如,Hbase 一天就可以有超过 200 亿个到达硬盘的读写操作,实现对大数据的处理。另外,noSQL数据库是一个数据模型灵活、支持多样数据类型,如对图数据建模、存储和分析,其性能、扩展性是关系数据库无法比拟的。

(4)面向分析型的 noSQL 技术。

面向分析型应用的 noSQL 技术主要依赖于Hadoop 分布式计算平台,Hadoop 是一个分布式计算平台,以 HDFS 和 Map Reduce 为用户提供系统底层细节透明的分布式基础架构。《Hadoop 经典实践染技巧》传统的数据库厂商 Microsoft,Oracle,SAS,IBM 等纷纷转向 Hadoop 的研究,如微软公司关闭 Dryad 系统,全力投入 Map Reduce 的研发,Oracle 在 2011 年下半年发布 Big Plan 战略计划,全面进军大数据处理领域,IBM 则早已捷足先登“,沃森(Watson)”计算机就是基于 Hadoop 技术开发的产物,同时 IBM 发布了 BigInsights 计划,基于 Hadoop,Netezza 和 SPSS(统计分析、数据挖掘软件)等技术和产品构建大数据分析处理的技术框架。同时也涌现出一批新公司来研究Hadoop 技术,如 Cloudera、MapRKarmashpere 等。

3数据管理方式的展望

通过以上分析,可以看出关系数据库的 ACID 强调数据一致性通常指关联数据之间的逻辑关系是否正确和完整,而对于很多互联网应用来说,对这一致性和隔离性的要求可以降低,而可用性的要求则更为明显,此时就可以采用 noSQL 的两种弱一致性的理论 BASE 和 CAP.关系数据库和 noSQL数据库并不是想到对立的矛盾体,而是可以相互补充的,根据不同需求使用不同的技术,甚至二者可以共同存在,互不影响。最近几年,以 Spanner 为代表新型数据库的出现,给数据库领域注入新鲜血液,这就是融合了一致性和可用性的 newSQL,这种新型思维方式或许会是未来大数据处理方式的发展方向。

4 结束语

随着云计算、物联网等的发展,数据呈现爆炸式的增长,人们正被数据洪流所包围,大数据的时代已经到来。正确利用大数据给人们的生活带来了极大的便利,但与此同时也给传统的数据管理方式带来了极大的挑战。

一、NoSQL数据库简介

Web1.0的时代,数据访问量很有限,用一夫当关的高性能的单点服务器可以解决大部分问题。

随着Web2.0的时代的到来,用户访问量大幅度提升,同时产生了大量的用户数据。加上后来的智能移动设备的普及,所有的互联网平台都面临了巨大的性能挑战。

NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,泛指非关系型的数据库。

NoSQL 不依赖业务逻辑方式存储,而以简单的key-value模式存储。因此大大的增加了数据库的扩展能力。

Memcache Memcache Redis Redis MongoDB MongoDB 列式数据库 列式数据库 Hbase Hbase

HBase是Hadoop项目中的数据库。它用于需要对大量的数据进行随机、实时的读写操作的场景中。

HBase的目标就是处理数据量非常庞大的表,可以用普通的计算机处理超过10亿行数据,还可处理有数百万列元素的数据表。

Cassandra Cassandra

Apache Cassandra是一款免费的开源NoSQL数据库,其设计目的在于管理由大量商用服务器构建起来的庞大集群上的海量数据集(数据量通常达到PB级别)。在众多显著特性当中,Cassandra最为卓越的长处是对写入及读取操作进行规模调整,而且其不强调主集群的设计思路能够以相对直观的方式简化各集群的创建与扩展流程。

主要应用:社会关系,公共交通网络,地图及网络拓谱(n*(n-1)/2)

什么是NoSQL数据库

什么是NoSQL数据库?从名称“非SQL”或“非关系型”衍生而来,这些数据库不使用类似SQL的查询语言,通常称为结构化存储。这些数据库自1960年就已经存在,但是直到现在一些大公司(例如Google和Facebook)开始使用它们时,这些数据库才流行起来。该数据库最明显的优势是摆脱了一组固定的列、连接和类似SQL的查询语言的限制。有时,NoSQL这个名称也可能表示“不仅仅SQL”,来确保它们可能支持SQL。 NoSQL数据库使用诸如键值、宽列、图形或文档之类的数据结构,并且可以如JSON之类的不同格式存储。


网页名称:nosql中数据管理策略,nosql数据库技术实战 pdf
文章链接:http://gzruizhi.cn/article/dsgshjg.html

其他资讯