189 8069 5689

nosql实现缓存,nosql内存数据库

nosql数据库的四种类型

一般将NoSQL数据库分为四大类:键值(Key-Value)存储数据库、列存储数据库、文档型数据库和图形(Graph)数据库。它们的数据模型、优缺点、典型应用场景。

为清水河等地区用户提供了全套网页设计制作服务,及清水河网站建设行业解决方案。主营业务为网站设计、成都网站建设、清水河网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!

键值(Key-Value)存储数据库Key指向Value的键值对,通常用hash表来实现查找速度快数据无结构化(通常只被当作字符串或者二进制数据)内容缓存,主要用于处理大量数据的高访问负载,也用于一些日志系统等。

列存储数据库,以列簇式存储,将同一列数据存在一起查找速度快,可扩展性强,更容易进行分布式扩展功能相对局限分布式的文件系统。

文档型数据库,Key-Value对应的键值对,Value为结构化数据,数据结构要求不严格,表结构可变(不需要像关系型数据库一样需预先定义表结构),查询性能不高,而且缺乏统一的查询语法,Web应用。

图形(Graph)数据库,图结构,利用图结构相关算法(如最短路径寻址,N度关系查找等),很多时候需要对整个图做计算才能得出需要的信息,而且这种结构不太好做分布式的集群方案,社交网络,推荐系统等。

mysql有基于LRU缓冲池,其它辅助缓存如memcached和redis的意义应该就不需要了,还是有其它需要的理由?

1、首先明确是不是一定要上缓存,当前架构的瓶颈在哪里,若瓶颈真是数据库操作上,再继续往下看。

2、明确memcached和redis的区别,到底要使用哪个。前者终究是个缓存,不可能永久保存数据(LRU机制),支持分布式,后者除了缓存的同时也支持把数据持久化到磁盘等,redis要自己去实现分布式缓存(貌似最新版本的已集成),自己去实现一致性hash。因为不知道应用场景,不好说一定要用memcache还是redis,说不定用mongodb会更好,比如在存储日志方面。

3、缓存量大但又不常变化的数据,比如评论。

4、思路是对的,清晰明了,读DB前,先读缓存,如果有直接返回,如果没有再读DB,然后写入缓存层并返回。

5、考虑是否需要主从,读写分离,考虑是否分布式部署,考虑是否后续水平伸缩。

6、想要一劳永逸,后续维护和扩展方便,那就将现有的代码架构优化,按你说的替换数据库组件需要改动大量代码,说明当前架构存在问题。可以利用现有的一些框架,比如SpringMVC,将应用层和业务层和数据库层解耦。再上缓存之前把这些做好。

7、把读取缓存等操作做成服务组件,对业务层提供服务,业务层对应用层提供服务。

8、保留原始数据库组件,优化成服务组件,方便后续业务层灵活调用缓存或者是数据库。

9、不建议一次性全量上缓存,最开始不动核心业务,可以将边缘业务先换成缓存组件,一步步换至核心业务。

10、刷新内存,以memcached为例,新增,修改和删除操作,一般采用lazy load的策略,即新增时只写入数据库,并不会马上更新Memcached,而是等到再次读取时才会加载到Memcached中,修改和删除操作也是更新 数据库,然后将Memcached中的数据标记为失效,等待下次读取时再加载。

大方向两种方案:

1、脚本同步:自己写脚本将数据库数据写入到redis/memcached。这就涉及到实时数据变更的问题(mysql row binlog的实时分析),binlog增量订阅Alibaba 的canal ,以及缓存层数据 丢失/失效 后的数据同步恢复问题。

2、业务层实现:先读取nosql缓存层,没有数据再读取mysql层,并写入数据到nosql。nosql层做好多节点分布式(一致性hash),以及节点失效后替代方案(多层hash寻找相邻替代节点),和数据震荡恢复了。

nosql是什么

NoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题。

虽然NoSQL流行语火起来才短短一年的时间,但是不可否认,现在已经开始了第二代运动。尽管早期的堆栈代码只能算是一种实验,然而现在的系统已经更加的成熟、稳定。不过现在也面临着一个严酷的事实:技术越来越成熟——以至于原来很好的NoSQL数据存储不得不进行重写,也有少数人认为这就是所谓的2.0版本。这里列出一些比较知名的工具,可以为大数据建立快速、可扩展的存储库。

NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。

对于NoSQL并没有一个明确的范围和定义,但是他们都普遍存在下面一些共同特征:

不需要预定义模式:不需要事先定义数据模式,预定义表结构。数据中的每条记录都可能有不同的属性和格式。当插入数据时,并不需要预先定义它们的模式。

无共享架构:相对于将所有数据存储的存储区域网络中的全共享架构。NoSQL往往将数据划分后存储在各个本地服务器上。因为从本地磁盘读取数据的性能往往好于通过网络传输读取数据的性能,从而提高了系统的性能。

弹性可扩展:可以在系统运行的时候,动态增加或者删除结点。不需要停机维护,数据可以自动迁移。

分区:相对于将数据存放于同一个节点,NoSQL数据库需要将数据进行分区,将记录分散在多个节点上面。并且通常分区的同时还要做复制。这样既提高了并行性能,又能保证没有单点失效的问题。

异步复制:和RAID存储系统不同的是,NoSQL中的复制,往往是基于日志的异步复制。这样,数据就可以尽快地写入一个节点,而不会被网络传输引起迟延。缺点是并不总是能保证一致性,这样的方式在出现故障的时候,可能会丢失少量的数据。

BASE:相对于事务严格的ACID特性,NoSQL数据库保证的是BASE特性。BASE是最终一致性和软事务。

NoSQL数据库并没有一个统一的架构,两种NoSQL数据库之间的不同,甚至远远超过两种关系型数据库的不同。可以说,NoSQL各有所长,成功的NoSQL必然特别适用于某些场合或者某些应用,在这些场合中会远远胜过关系型数据库和其他的NoSQL。


网站题目:nosql实现缓存,nosql内存数据库
URL地址:http://gzruizhi.cn/article/dsisdhd.html

其他资讯