189 8069 5689

25日志分析项目

 

创新互联不只是一家网站建设的网络公司;我们对营销、技术、服务都有自己独特见解,公司采取“创意+综合+营销”一体化的方式为您提供更专业的服务!我们经历的每一步也许不一定是最完美的,但每一步都有值得深思的意义。我们珍视每一份信任,关注我们的成都网站制作、成都做网站质量和服务品质,在得到用户满意的同时,也能得到同行业的专业认可,能够为行业创新发展助力。未来将继续专注于技术创新,服务升级,满足企业一站式全网营销推广需求,让再小的高端网站设计也能产生价值!

 

 

生产中会生成大量的系统日志、应用程序日志、安全日志等等,通过对日志的分析,可了解服务器的负载、健康状态,可分析客户的分布情况、客户的行为,甚至基于这些分析可做出预测;

 

一般采集流程:

日志产出-->采集-->存储-->分析-->存储-->可视化;

采集(logstash、flume(apache)、scribe(facebook));

 

开源实时日志分析,ELK平台:

logstash收集日志,存放到ES集群中,kibana从ES中查询数据生成图表,返回browser;

 

离线分析;

在线分析,一份生成日志,一份传给大数据实时处理服务;

实时处理技术:storm、spark;

 

 

分析的前提:

半结构化数据:日志是半结构化数据,是有组织的,有格式的数据,可分割成行和列,可当作表来处理,也可分析里面的数据;

 

文本分析:日志是文本文件,需要依赖文件io、字符串操作、正则等技术,通过这些技术能把日志中需要的数据提取出来;

 

例:

123.125.71.36 - - [06/Apr/2017:18:09:25 +0800] "GET / HTTP/1.1" 200 8642 "-" "Mozilla/5.0 (compatible; Baiduspider/2.0; +http://www.baidu.com/search/spider.html)"

 

提取数据:

1、用空格分割;

方1:

25日志分析项目

方2:先空格分割,遇""[]特殊处理;

 

2、用正则提取;

 

1、

import datetime

 

logs = '''123.125.71.36 - - [06/Apr/2017:18:09:25 +0800]

"GET / HTTP/1.1" 200 8642 "-"

"Mozilla/5.0 (compatible; Baiduspider/2.0; +http://www.baidu.com/search/spider.html)"'''

 

names = ('remote','','','datetime','request','status','length','','useragent')

 

ops = (None,None,None,lambda timestr: datetime.datetime.strptime(timestr,'%d/%b/%Y:%H:%M:%S %z'),

       lambda request: dict(zip(['method','url','protocol'],request.split())),int,int,None,None)

 

def extract(line):

    fields = []

    flag = False

    tmp = ''

 

    for field in line.split():

    #     print(field)

        if not flag and (field.startswith('[') or field.startswith('"')):

            if field.endswith(']') or field.endswith('"'):

                fields.append(field.strip())

            else:

                tmp += field[1:]

    #             print(tmp)

                flag = True

            continue

 

        if flag:

            if field.endswith(']') or field.endswith('"'):

                tmp += ' ' + field[:-1]

                fields.append(tmp)

                flag = False

                tmp = ''

            else:

                tmp += ' ' + field

            continue

 

        fields.append(field)

    print(fields)

   

    info = {}

    for i,field in enumerate(fields):

#         print(i,field)

        name = names[i]

        op = ops[i]

        if op:

            info[name] = (op(field),op)

    return info

 

print(extract(logs))

输出:

['123.125.71.36', '-', '-', '06/Apr/2017:18:09:25 +0800', 'GET / HTTP/1.1', '200', '8642', '"-"', 'Mozilla/5.0 (compatible; Baiduspider/2.0; +http://www.baidu.com/search/spider.html)']

Out[16]:

{'datetime': (datetime.datetime(2017, 4, 6, 18, 9, 25, tzinfo=datetime.timezone(datetime.timedelta(0, 28800))),

  >),

 'length': (8642, int),

 'request': ({'method': 'GET', 'protocol': 'HTTP/1.1', 'url': '/'},

  >),

 'status': (200, int)}

 

2、

25日志分析项目

((?:\d{1,3}\.){3}\d{1,3}) - - \[([/:+ \w]+)\] "(\w+) (\S+) ([/\.\w\d]+)" (\d+) (\d+) .+ "(.+)"

 

import datetime

import re

 

# logs = '''123.125.71.36 - - [06/Apr/2017:18:09:25 +0800] "GET / HTTP/1.1" 200 8642 "-" "Mozilla/5.0 (compatible; Baiduspider/2.0; +http://www.baidu.com/search/spider.html)"'''

 

ops = {

    'datetime': lambda timestr: datetime.datetime.strptime(timestr,'%d/%b/%Y:%H:%M:%S %z'),

    'status': int,

    'length': int

}

 

pattern = '''(?P(?:\d{1,3}\.){3}\d{1,3}) - - \[(?P[/:+ \w]+)\] "(?P\w+) (?P\S+) (?P[/\.\w\d]+)" (?P\d+) (?P\d+) .+ "(?P.+)"'''

 

regex = re.compile(pattern)

 

def extract(line)->dict:

    matcher = regex.match(line)

    info = None

    if matcher:

        info = {k:ops.get(k,lambda x:x)(v) for k,v in matcher.groupdict().items()}

    return info

 

# print(extract(logs))

 

def load(path:str):   #装载日志文件

    with open(path) as f:

        for line in f:

            d = extract(line)

            if d:

                yield d   #生成器函数

            else:

                continue   #不合格数据,pycharm中左下角TODO(view-->Status Bar)

 

g = load('access.log')

print(next(g))

print(next(g))

print(next(g))

 

# for i in g:

#     print(i)

输出:

{'remote': '123.125.71.36', 'datetime': datetime.datetime(2017, 4, 6, 18, 9, 25, tzinfo=datetime.timezone(datetime.timedelta(0, 28800))), 'method': 'GET', 'request': '/', 'protocol': 'HTTP/1.1', 'status': 200, 'length': 8642, 'useragent': 'Mozilla/5.0 (compatible; Baiduspider/2.0; +http://www.baidu.com/search/spider.html)'}

{'remote': '112.64.118.97', 'datetime': datetime.datetime(2017, 4, 6, 19, 13, 59, tzinfo=datetime.timezone(datetime.timedelta(0, 28800))), 'method': 'GET', 'request': '/favicon.ico', 'protocol': 'HTTP/1.1', 'status': 200, 'length': 4101, 'useragent': 'Dalvik/2.1.0 (Linux; U; Android 5.1.1; SM-G9250 Build/LMY47X)'}

{'remote': '119.123.183.219', 'datetime': datetime.datetime(2017, 4, 6, 20, 59, 39, tzinfo=datetime.timezone(datetime.timedelta(0, 28800))), 'method': 'GET', 'request': '/favicon.ico', 'protocol': 'HTTP/1.1', 'status': 200, 'length': 4101, 'useragent': 'Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/49.0.2623.221 Safari/537.36 SE 2.X MetaSr 1.0'}

注:

代码若在jupyter下,注意logs中内容不能换行;

 

 

 

滑动窗口:

或叫时间窗口,时间窗口函数,在数据分析领域极其重要;

很多数据,如日志,都是和时间相关的,都是按时间顺序产生的,在数据分析时,要按照时间来求值;

interval,表示每一次求值的时间间隔;

width,时间窗口宽度,指一次求值的时间窗口宽度,每个时间窗口的数据不均匀;

 

当width > interval

25日志分析项目

有重叠;

 

当width = interval

25日志分析项目25日志分析项目

数据求值没有重叠;

 

当width < interval

一般不采纳这种方案,会有数据缺失;

如业务数据有1000万条,要求每次漏几个,这不影响统计趋势;

25日志分析项目25日志分析项目

c2 = c1 - delta

delta = width - interval

delta = 0时,width = interval

 

时序数据,运维环境中,日志、监控等产生的数据是按时间先后产生并记录下来的,与时间相关的数据,一般按时间对数据进行分析;

数据分析基本程序结构:

 

例:

一函数,无限的生成随机数函数,产生时间相关的数据,返回->时间+随机数;

每次取3个数据,求平均值;

import random

import datetime

 

# def source():

#     while True:

#         yield datetime.datetime.now(),random.randint(1,100)

 

# i = 0

# for x in source():

#     print(x)

#     i += 1

#     if i > 100:

#         break

 

# for _ in range(100):

#     print(next(source()))

 

def source():

    while True:

        yield {'value': random.randint(1,100),'datetime':datetime.datetime.now()}

 

src = source()

# lst = []

# lst.append(next(src))

# lst.append(next(src))

# lst.append(next(src))

lst = [next(src) for _ in range(3)]

 

def handler(iterable):

    values = [x['value'] for x in iterable]

    return sum(values) // len(values)

 

print(lst)

print(handler(lst))

 

 

 

窗口函数:

import datetime

import re

 

# logs = '''123.125.71.36 - - [06/Apr/2017:18:09:25 +0800] "GET / HTTP/1.1" 200 8642 "-" "Mozilla/5.0 (compatible; Baiduspider/2.0; +http://www.baidu.com/search/spider.html)"'''

 

ops = {

    'datetime': lambda timestr: datetime.datetime.strptime(timestr,'%d/%b/%Y:%H:%M:%S %z'),

    'status': int,

    'length': int

}

 

pattern = '''(?P(?:\d{1,3}\.){3}\d{1,3}) - - \[(?P[/:+ \w]+)\] "(?P\w+) (?P\S+) (?P[/\.\w\d]+)" (?P\d+) (?P\d+) .+ "(?P.+)"'''

 

regex = re.compile(pattern)

 

def extract(line)->dict:

    matcher = regex.match(line)

    info = None

    if matcher:

        info = {k:ops.get(k,lambda x:x)(v) for k,v in matcher.groupdict().items()}

    return info

 

# print(extract(logs))

 

def load(path:str):

    with open(path) as f:

        for line in f:

            d = extract(line)

            if d:

                yield d

            else:

                continue

 

# g = load('access.log')

# print(next(g))

# print(next(g))

# print(next(g))

 

# for i in g:

#     print(i)

 

def window(src,handler,width:int,interval:int):

    # src = {'remote': '112.64.118.97', 'datetime': datetime.datetime(2017, 4, 6, 19, 13, 59, tzinfo=datetime.timezone(datetime.timedelta(0, 28800))), 'method': 'GET', 'request': '/favicon.ico', 'protocol': 'HTTP/1.1', 'status': 200, 'length': 4101, 'useragent': 'Dalvik/2.1.0 (Linux; U; Android 5.1.1; SM-G9250 Build/LMY47X)'}

    start = datetime.datetime.strptime('1970/01/01 01:01:01 +0800','%Y/%m/%d %H:%M:%S %z')

    current = datetime.datetime.strptime('1970/01/01 01:01:02 +0800','%Y/%m/%d %H:%M:%S %z')

    seconds = width - interval

    delta = datetime.timedelta(seconds)

    buffer = []

 

    for x in src:

        if x:

            buffer.append(x)

            current = x['datetime']

        if (current-start).total_seconds() >= interval:

            ret = handler(buffer)

            # print(ret)

            start = current

            # tmp = []

            # for i in buffer:

            #     if i['datetime'] > current - delta:

            #         tmp.append(i)

            buffer = [i for i in buffer if i['datetime'] > current - delta]

 

def donothing_handler(iterable:list):

    print(iterable)

    return iterable

 

def handler(iterable:list):

    pass   #TODO

 

def size_handler(iterable:list):

    pass   #TODO

 

# window(load('access.log'),donothing_handler,8,5)

# window(load('access.log'),donothing_handler,10,5)

window(load('access.log'),donothing_handler,5,5)

输出:

[{'remote': '123.125.71.36', 'datetime': datetime.datetime(2017, 4, 6, 18, 9, 25, tzinfo=datetime.timezone(datetime.timedelta(0, 28800))), 'method': 'GET', 'request': '/', 'protocol': 'HTTP/1.1', 'status': 200, 'length': 8642, 'useragent': 'Mozilla/5.0 (compatible; Baiduspider/2.0; +http://www.baidu.com/search/spider.html)'}]

[{'remote': '112.64.118.97', 'datetime': datetime.datetime(2017, 4, 6, 19, 13, 59, tzinfo=datetime.timezone(datetime.timedelta(0, 28800))), 'method': 'GET', 'request': '/favicon.ico', 'protocol': 'HTTP/1.1', 'status': 200, 'length': 4101, 'useragent': 'Dalvik/2.1.0 (Linux; U; Android 5.1.1; SM-G9250 Build/LMY47X)'}]

[{'remote': '119.123.183.219', 'datetime': datetime.datetime(2017, 4, 6, 20, 59, 39, tzinfo=datetime.timezone(datetime.timedelta(0, 28800))), 'method': 'GET', 'request': '/favicon.ico', 'protocol': 'HTTP/1.1', 'status': 200, 'length': 4101, 'useragent': 'Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/49.0.2623.221 Safari/537.36 SE 2.X MetaSr 1.0'}]

 

 

 

分发:

生产者消费者模型:

对于一个监控系统,需要处理很多数据,包括日志;

要有数据的采集、分析;

被监控对象,即数据的producer生产者,数据的处理程序,即数据的consumer消费者;

传统的生产者消费者模型,生产者生产,消费者消费,这种模型有些问题,开发的代码耦合太高,如果生产规模扩大,不易扩展,生产和消费的速度难匹配;

 

queue队列,食堂打饭;

producer-consumer,卖包子;消费速度 >= 生产速度;解决办法:queue,作用:解耦(在程序间实现解耦(服务间解耦))、缓冲;

 

注:

zeromq,底层通信协议用;

大多数*mq,都是消费队列;

kafka,性能极高;

FIFO,先进先出;

LIFO,后进先出;

 

数据的生产是不稳定的,会造成短时间数据的潮涌,需要缓冲;

消费者消费能力不一样,有快有慢,消费者可以自己决定消费缓冲区中的数据;

单机可用queue(内建模块)构建进程内的队列,满足多个线程间的生产消费需要;

大型系统可使用第三方消息中间件,rabbitmq、rocketmq、kafka;

 

queue模块:

queue.Queue(maxsize=0),queue提供了一个FIFO先进先出的队列Queue,创建FIFO队列,返回Queue对象;maxsize <= 0,队列长度没有限制;

 

q = queue.Queue()

 

q.get(block=True,timeout=None),从队列中移除元素并返回这个元素,只要get过即拿走就没了;

block阻塞,timeout超时;

若block=True,是阻塞,timeout=None,就是一直阻塞,timeout有值,即阻塞到一定秒数抛Empty异常;

若blcok=False,是非阻塞,timeout将被忽略,要么成功返回一个元素,要么抛Empty异常;

 

q.get_nowait(),等价于q.get(block=False)或q.get(False),即要么成功返回一个元素,要么抛Empty异常;这种阻塞效果,要多线程中举例;

 

q.put(item,block=True,timeout=None),把一个元素加入到队列中去,

block=True,timeout=None,一直阻塞直至有空位放元素;

block=True,timeout=5,阻塞5秒抛Full异常;

block=False,timeout失效,立即返回,能塞进去就塞,不能则抛Full异常;

 

q.put_nowait(item),等价于q.put(item,False);

 

注:

Queue的长度是个近似值,不准确,因为生产消费一直在进行;

q.get(),只要get过,即拿走,数据就没了;而kafka中,拿走数据后,kafka中仍保留有,由consumer来清理;

 

例:

from queue import Queue

import random

 

q = Queue()

 

q.put(random.randint(1,100))

q.put(random.randint(1,100))

 

print(q.get())

print(q.get())

# print(q.get())   #block

print(q.get(timeout=3))

输出:

2

35

Traceback (most recent call last):

  File "/home/python/magedu/projects/cmdb/queue_Queue.py", line 12, in

    print(q.get(timeout=3))

  File "/ane/python3.6/lib/python3.6/queue.py", line 172, in get

    raise Empty

queue.Empty

 

分发器的实现:

生产者(数据源)生产数据,缓冲到消息队列中;

数据处理流程:数据加载-->提取-->分析(滑动窗口函数);

 

处理大量数据时,对于一个数据源来说,需要多个消费者处理,但如何分配数据?

需要一个分发器(调度器),把数据分发给不同的消费者处理;

每一个消费者拿到数据后,有自己的处理函数,所以要有一种注册机制;

数据加载-->提取-->分发-->分析函数1|分析函数2,一个数据通过分发器,发送给n个消费者,分析函数1|分析函数2为不同的handler,不同的窗口宽度,间隔时间;

 

如何分发?

一对多,副本发送(一个数据通过分发器,发送到n个消费者),用轮询;

 

MQ?

在生产者和消费者之间用消息队列,那么所有的消费者共用一个消息队列?(这需要解决争抢的问题);还是各自拥有一个消息队列?(较容易);

 

注册?

在调度器内部记录有哪些消费者,记录消费者自己的队列;

 

线程?

由于一条数据会被多个不同的注册过的handler处理,所以最好的方式是多线程;

注:

import threading

t = threading.Thread(target=window,args=(src,handler,width,interval))   #target,线程中运行的函数,args,这个函数运行时需要的实参用tuple

t.start()

 

分析功能:

分析日志很重要,通过海量数据的分析就能知道是否遭受了***,是否是爬取的高峰期,是否有盗链;

分析的逻辑放到handler中;

window仅通过时间窗口挪动取数据,不要将其的功能做的丰富全面,若需统一处理,独立出单独的函数;

 

注:

爬虫:baiduspider,googlebot,SEO,http,request,response;

 

状态码分析:

状态码中包含了很多信息;

304,服务器收到客户端提交的请求数,发现资源未变化,要求browser使用静态资源的缓存;

404,server找不到请求的资源;

304占比大,说明静态缓存效果明显;

404占比大,说明出现了错误链接,或深度嗅探网站资源;

若400,500占比突然开始增大,网站一定出问题了;

 

import datetime

import re

from queue import Queue

import threading

 

# logs = '''123.125.71.36 - - [06/Apr/2017:18:09:25 +0800] "GET / HTTP/1.1" 200 8642 "-" "Mozilla/5.0 (compatible; Baiduspider/2.0; +http://www.baidu.com/search/spider.html)"'''

 

ops = {

    'datetime': lambda timestr: datetime.datetime.strptime(timestr,'%d/%b/%Y:%H:%M:%S %z'),

    'status': int,

    'length': int

}

 

pattern = '''(?P(?:\d{1,3}\.){3}\d{1,3}) - - \[(?P[/:+ \w]+)\] "(?P\w+) (?P\S+) (?P[/\.\w\d]+)" (?P\d+) (?P\d+) .+ "(?P.+)"'''

 

regex = re.compile(pattern)

 

def extract(line)->dict:

    matcher = regex.match(line)

    info = None

    if matcher:

        info = {k:ops.get(k,lambda x:x)(v) for k,v in matcher.groupdict().items()}

    return info

 

# print(extract(logs))

 

def load(path:str):

    with open(path) as f:

        for line in f:

            d = extract(line)

            if d:

                yield d

            else:

                continue

 

# g = load('access.log')

# print(next(g))

# print(next(g))

# print(next(g))

 

# for i in g:

#     print(i)

 

# def window(src,handler,width:int,interval:int):

#     # src = {'remote': '112.64.118.97', 'datetime': datetime.datetime(2017, 4, 6, 19, 13, 59, tzinfo=datetime.timezone(datetime.timedelta(0, 28800))), 'method': 'GET', 'request': '/favicon.ico', 'protocol': 'HTTP/1.1', 'status': 200, 'length': 4101, 'useragent': 'Dalvik/2.1.0 (Linux; U; Android 5.1.1; SM-G9250 Build/LMY47X)'}

#     start = datetime.datetime.strptime('1970/01/01 01:01:01 +0800','%Y/%m/%d %H:%M:%S %z')

#     current = datetime.datetime.strptime('1970/01/01 01:01:02 +0800','%Y/%m/%d %H:%M:%S %z')

#     seconds = width - interval

#     delta = datetime.timedelta(seconds)

#     buffer = []

#

#     for x in src:

#         if x:

#             buffer.append(x)

#             current = x['datetime']

#         if (current-start).total_seconds() >= interval:

#             ret = handler(buffer)

#             # print(ret)

#             start = current

#             # tmp = []

#             # for i in buffer:

#             #     if i['datetime'] > current - delta:

#             #         tmp.append(i)

#             buffer = [i for i in buffer if i['datetime'] > current - delta]

 

# window(load('access.log'),donothing_handler,8,5)

# window(load('access.log'),donothing_handler,10,5)

# window(load('access.log'),donothing_handler,5,5)

 

def window(src:Queue,handler,width:int,interval:int):

    # src = {'remote': '112.64.118.97', 'datetime': datetime.datetime(2017, 4, 6, 19, 13, 59, tzinfo=datetime.timezone(datetime.timedelta(0, 28800))), 'method': 'GET', 'request': '/favicon.ico', 'protocol': 'HTTP/1.1', 'status': 200, 'length': 4101, 'useragent': 'Dalvik/2.1.0 (Linux; U; Android 5.1.1; SM-G9250 Build/LMY47X)'}

    start = datetime.datetime.strptime('1970/01/01 00:01:01 +0800','%Y/%m/%d %H:%M:%S %z')

    current = datetime.datetime.strptime('1970/01/01 01:01:02 +0800','%Y/%m/%d %H:%M:%S %z')

    delta = datetime.timedelta(width-interval)

    buffer = []

 

    while True:

        data = src.get()

        if data:

            buffer.append(data)

            current = data['datetime']

        if (current-start).total_seconds() >= interval:

            ret = handler(buffer)

            # print(ret)

            start = current

            buffer = [i for i in buffer if i['datetime'] > current - delta]

 

def donothing_handler(iterable:list):

    print(iterable)

    return iterable

 

def handler(iterable:list):

    pass   #TODO

 

def size_handler(iterable:list):

    pass   #TODO

 

def status_handler(iterable:list):

    d = {}

    for item in iterable:

        key = item['status']

        if key not in d.keys():

            d[key] = 0

        d[key] += 1

    total = sum(d.values())

    print({k:v/total*100 for k,v in d.items()})   #return

 

def dispatcher(src):

    queues = []

    threads = []

    def reg(handler,width,interval):

        q = Queue()

        queues.append(q)

        t = threading.Thread(target=window,args=(q,handler,width,interval))

        threads.append(t)

    def run():

        for t in threads:

            t.start()

        for x in src:

            for q in queues:

                q.put(x)

    return reg,run

 

reg,run = dispatcher(load('access.log'))

reg(status_handler,8,5)

run()

 

 

 

日志文件加载:

改为接受一批;

如果一批路径,迭代每一个路径;

如果路径是一个普通文件,按行读取内容(假设是日志文件);

如果路径是一个目录,就遍历路径下的所有普通文件,每一个文件按行处理,不递归处理子目录;

 

def openfile(path:str):

    with open(path) as f:

        for line in f:

            d = extract(line)

            if d:

                yield d

            else:

                continue

 

def load(*paths):

    for file in paths:

        p = Path(file)

        if not p.exists():

            continue

        if p.is_dir():

            for x in p.iterdir():

                if x.is_file():

                    # for y in openfile(str(x)):

                    #     yield y

                    yield from openfile(str(x))

        elif p.is_file():

            # for y in openfile(str(p)):

            #     yield y

            yield from openfile(str(p))

 

离线日志分析项目:

可指定文件或目录,对日志进行数据分析;

分析函数可动态注册;

数据可分发给不同的分析处理程序处理;

 

关键步骤:

数据源处理(处理一行行数据);

拿到数据后的处理(作为分析,一小批一小批处理,窗口函数);

分发器(生产者和消费者间作为桥梁作用);

 

 

 

浏览器分析:

useragent,指软件按一定的格式向远端服务器提供一个标记自己的字符串;

在http协议中,使用user-agent字段传送一这个字符串,这个值可被修改(想伪装谁都可以);

格式:([platform details]) [extensions]

例如:"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/28.0.1500.72 Safari/537.36"

 

注:

chrome-->console,navigator.userAgent,将内容复制粘贴到傲游的自定义UserAgent中;

 

信息提取模块:

user-agents、pyyaml、ua-parser;

]$ pip install user-agents pyyaml ua-parser

 

例:

from user_agents import parse

 

u = 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/28.0.1500.72 Safari/537.36'

ua = parse(u)

 

print(ua.browser)

print(ua.browser.family)

print(ua.browser.version_string)

输出:

Browser(family='Chrome', version=(28, 0, 1500), version_string='28.0.1500')

Chrome

28.0.1500

 

整合,完整代码:

25日志分析项目

import datetime

import re

from queue import Queue

import threading

from pathlib import Path

from user_agents import parse

from collections import defaultdict

 

# logs = '''123.125.71.36 - - [06/Apr/2017:18:09:25 +0800] "GET / HTTP/1.1" 200 8642 "-" "Mozilla/5.0 (compatible; Baiduspider/2.0; +http://www.baidu.com/search/spider.html)"'''

 

ops = {

    'datetime': lambda timestr: datetime.datetime.strptime(timestr,'%d/%b/%Y:%H:%M:%S %z'),

    'status': int,

    'length': int,

    'request': lambda request: dict(zip(('method','url','protocol'),request.split())),

    'useragent': lambda useragent: parse(useragent)

}

 

# pattern = '''(?P(?:\d{1,3}\.){3}\d{1,3}) - - \[(?P[/:+ \w]+)\] "(?P\w+) (?P\S+) (?P[/\.\w\d]+)" (?P\d+) (?P\d+) .+ "(?P.+)"'''

pattern = '''(?P(?:\d{1,3}\.){3}\d{1,3}) - - \[(?P[/:+ \w]+)\] "(?P\w+) (?P\S+) (?P[/\.\w\d]+)" (?P\d+) (?P\d+) .+ "(?P.+)"'''

 

regex = re.compile(pattern)

 

def extract(line)->dict:

    matcher = regex.match(line)

    info = None

    if matcher:

        info = {k:ops.get(k,lambda x:x)(v) for k,v in matcher.groupdict().items()}

    # print(info)

    return info

 

# print(extract(logs))

 

# def load(path:str):

#     with open(path) as f:

#         for line in f:

#             d = extract(line)

#             if d:

#                 yield d

#             else:

#                 continue

 

def openfile(path:str):

    with open(path) as f:

        for line in f:

            d = extract(line)

            if d:

                yield d

            else:

                continue

 

def load(*paths):

    for file in paths:

        p = Path(file)

        if not p.exists():

            continue

        if p.is_dir():

            for x in p.iterdir():

                if x.is_file():

                    # for y in openfile(str(x)):

                    #     yield y

                    yield from openfile(str(x))

        elif p.is_file():

            # for y in openfile(str(p)):

            #     yield y

            yield from openfile(str(p))

 

# g = load('access.log')

# print(next(g))

# print(next(g))

# print(next(g))

 

# for i in g:

#     print(i)

 

# def window(src,handler,width:int,interval:int):

#     # src = {'remote': '112.64.118.97', 'datetime': datetime.datetime(2017, 4, 6, 19, 13, 59, tzinfo=datetime.timezone(datetime.timedelta(0, 28800))), 'method': 'GET', 'request': '/favicon.ico', 'protocol': 'HTTP/1.1', 'status': 200, 'length': 4101, 'useragent': 'Dalvik/2.1.0 (Linux; U; Android 5.1.1; SM-G9250 Build/LMY47X)'}

#     start = datetime.datetime.strptime('1970/01/01 01:01:01 +0800','%Y/%m/%d %H:%M:%S %z')

#     current = datetime.datetime.strptime('1970/01/01 01:01:02 +0800','%Y/%m/%d %H:%M:%S %z')

#     seconds = width - interval

#     delta = datetime.timedelta(seconds)

#     buffer = []

#

#     for x in src:

#         if x:

#             buffer.append(x)

#             current = x['datetime']

#         if (current-start).total_seconds() >= interval:

#             ret = handler(buffer)

#             # print(ret)

#             start = current

#             # tmp = []

#             # for i in buffer:

#             #     if i['datetime'] > current - delta:

#             #         tmp.append(i)

#             buffer = [i for i in buffer if i['datetime'] > current - delta]

 

# window(load('access.log'),donothing_handler,8,5)

# window(load('access.log'),donothing_handler,10,5)

# window(load('access.log'),donothing_handler,5,5)

 

def window(src:Queue,handler,width:int,interval:int):

    # src = {'remote': '112.64.118.97', 'datetime': datetime.datetime(2017, 4, 6, 19, 13, 59, tzinfo=datetime.timezone(datetime.timedelta(0, 28800))), 'method': 'GET', 'request': '/favicon.ico', 'protocol': 'HTTP/1.1', 'status': 200, 'length': 4101, 'useragent': 'Dalvik/2.1.0 (Linux; U; Android 5.1.1; SM-G9250 Build/LMY47X)'}

    start = datetime.datetime.strptime('1970/01/01 00:01:01 +0800','%Y/%m/%d %H:%M:%S %z')

    current = datetime.datetime.strptime('1970/01/01 01:01:02 +0800','%Y/%m/%d %H:%M:%S %z')

    delta = datetime.timedelta(width-interval)

    buffer = []

 

    while True:

        data = src.get()

        if data:

            buffer.append(data)

            current = data['datetime']

        if (current-start).total_seconds() >= interval:

            ret = handler(buffer)

            # print(ret)

            start = current

            buffer = [i for i in buffer if i['datetime'] > current - delta]

 

def donothing_handler(iterable:list):

    print(iterable)

    return iterable

 

def handler(iterable:list):

    pass   #TODO

 

def size_handler(iterable:list):

    pass   #TODO

 

def status_handler(iterable:list):

    d = {}

    for item in iterable:

        key = item['status']

        if key not in d.keys():

            d[key] = 0

        d[key] += 1

    total = sum(d.values())

    print({k:v/total*100 for k,v in d.items()})   #return

 

browsers = defaultdict(lambda :0)

def browser_handler(iterable:list):

    # browsers = {}

    for item in iterable:

        ua = item['useragent']

        key = (ua.browser.family,ua.browser.version_string)

        # browsers[key] = browsers.get(key,0) + 1

        browsers[key] += 1

    return browsers

 

def dispatcher(src):

    queues = []

    threads = []

    def reg(handler,width,interval):

        q = Queue()

        queues.append(q)

        t = threading.Thread(target=window,args=(q,handler,width,interval))

        threads.append(t)

    def run():

        for t in threads:

            t.start()

        for x in src:

            for q in queues:

                q.put(x)

    return reg,run

 

reg,run = dispatcher(load('access.log'))

reg(status_handler,8,5)

reg(browser_handler,5,5)

run()

print(browsers)

 

 

 

 

 

 

 

 


当前题目:25日志分析项目
文章源于:http://gzruizhi.cn/article/ghsjie.html

其他资讯