189 8069 5689

python递归函数画图 python递归函数画树

关于python 画图的问题,我有一串码完全看不懂,麻烦大家帮我看一下。

首先,确定三角形的位置需要三个点。代码里给出的myPoints = [[-100,-50],[0,100],[100,-50]]就是这三个点的位置,你可以在坐标轴里画一个x,y轴,找一下就知道了。如果只是想让三角形倒过来,就重新给它三个点[[-100,100],[100,100],[0,-50]]。

10年积累的成都网站设计、成都网站建设、外贸网站建设经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先做网站后付款的网站建设流程,更有华池免费网站建设让你可以放心的选择与我们合作。

其次,三角形的边长,就是两个点之间的直线距离。从代码里可以看到,(-100,-50),(100,-50)这两个点是在同一条横向的线上,它们的距离是200.所以想把三角形的尺寸扩大两倍,就需要把边长扩大,给出新的点[[-200,200],[200,200],[0,-100]]

综上,修改main函数中的myPoints,即可达到你的需求:倒置三角形,尺寸扩大两倍

def main():

myTurtle = turtle.Turtle()

myWin = turtle.Screen()

myPoints = [[-200,200],[200,200],[0,-100]]

sierpinski(myPoints,3,myTurtle)

myWin.exitonclick()

再解释几个问题:

myTurtle.up() 和myTurtle.down()

可以把myTurtle看做是画笔,myTurtle.up()就表示把画笔从画布上抬起,也就是不跟画布接触。myTurtle.down()也就可以看成是画笔跟画布接触。

sierpinski是定义的一个递归画三角形的方法,degree可以理解成递归的深度,也就是说在一个三角形内可以再画几个小三角形(不包括中间的三角形)。代码里degree 是3,你可以运行一下代码,看看效果。

希望能帮到你,有疑问请追问!

python里如何用递归法列出一个tree里所有的枝干?

您好:perm函数输出的是参数list从参数k位置开始,到参数m位置结束的全排列

def perm(list,k,m):

if k==m:

for i in range(m+1): # 递归的结束条件是k==m,在整个递归过程中参数m(即结束位置没有改变),而参数k则每次递归+1

print list[i], # 输出递归结束时的list状态

print

else:

for i in range(k,m+1): # 该循环用来负责生成递归的下一个状态

list[k],list[i]=list[i],list[k] # 将list的k位置与每一个位置i分别交换

perm(list,k+1,m) # 由于k位置与每一个位置i交换,也即k位置所有可能选值都已被穷举,此时只需要继续计算k+1之后的职位即可,因此以k+1为开始位置,结束位置m不变进入下一层递归

list[k],list[i]=list[i],list[k] # 由于list是引用传递,因此需要在位置交换之后重新交换,以保证list不变。

python 递归函数可视化

参考一下第一步:简单实现装饰器 def login(func): print("in Login") return func def tv(name): print("{name} in TV".format(name = name)) tv = login(tv) tv('Jack') # out: # in Login # Jack in TV 第二步:同上 效果相同,但是使用的是@login def login(func): print("in Login") return func @login def tv(name): print("{name} in TV".format(name = name)) #tv = login(tv) tv('Jack') # out: # in Login # Jack in TV 但是出现问题,注销最后的执行语句仍有输出,原因在于@login的调用,即@login相当于执行了tv = login(tv) 所以才有输出。 def login(func): print("in Login") return func @login def tv(name): print("{name} in TV".format(name = name)) #tv = login(tv) #tv('Jack') # out: # in Login 如下调整可解决 def login(func): def inner(arg): print("in Login") # return func func(arg) return inner @login def tv(name): print("{name} in TV".format(name = name)) #tv = login(tv) tv('Jack') # out: # in Login # Jack in TV 简单的递归函数 #!/usr/bin/env python #递归函数 def calc(num): print("Number:",num) if num/2 1: calc(num/2) print("After Number:",num/2) calc(10) # Number: 10 # Number: 5.0 # Number: 2.5 # Number: 1.25 # After Number: 1.25 # After Number: 2.5 # After Number: 5.0 递归实现斐波那契数列 # Fibonacci sequence # F[n]=F[n-1]+F[n-2](n=2,F[0]=1,F[1]=1) # 斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... fibList = [1,1] def getFib(fibList): print(fibList) if fibList[-1] + fibList[-2] 300: fibList.append(fibList[-1] + fibList[-2]) getFib(fibList) pass pass getFib(fibList) print("[FINAL]:",fibList) # [1, 1] # [1, 1, 2] # [1, 1, 2, 3] # [1, 1, 2, 3, 5] # [1, 1, 2, 3, 5, 8] # [1, 1, 2, 3, 5, 8, 13] # [1, 1, 2, 3, 5, 8, 13, 21] # [1, 1, 2, 3, 5, 8, 13, 21, 34] # [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] # [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89] # [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144] # [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233] # [FINAL]: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233]

python递归函数

def Sum(m): #函数返回两个值:递归次数,所求的值 if m==1:return 1,m return 1+Sum(m-1)[0],m+Sum(m-1)[1]cishu=Sum(10)[0] print cishu def Sum(m,n=1): ... if m==1:return n,m ... return n,m+Sum(m-1,n+1)[1] print Sum(10)[0] 10 print Sum(5)[0] 5

Python3:怎么通过递归函数

函数的递归调用

递归问题是一个说简单也简单,说难也有点难理解的问题.我想非常有必要对其做一个总结.

首先理解一下递归的定义,递归就是直接或间接的调用自身.而至于什么时候要用到递归,递归和非递归又有那些区别?又是一个不太容易掌握的问题,更难的是对于递归调用的理解.下面我们就从程序+图形的角度对递归做一个全面的阐述.

我们从常见到的递归问题开始:

1 阶层函数

#include iostream

using namespace std;

int factorial(int n)

{

if (n == 0)

{

return 1;

}

else

{

int result = factorial(n-1);

return n * result;

}

}

int main()

{

int x = factorial(3);

cout x endl;

return 0;

}

这是一个递归求阶层函数的实现。很多朋友只是知道该这么实现的,也清楚它是通过不断的递归调用求出的结果.但他们有些不清楚中间发生了些什么.下面我们用图对此做一个清楚的流程:

根据上面这个图,大家可以很清楚的看出来这个函数的执行流程。我们的阶层函数factorial被调用了4次.并且我们可以看出在调用后面的调用中,前面的调用并不退出。他们同时存在内存中。可见这是一件很浪费资源的事情。我们该次的参数是3.如果我们传递10000呢。那结果就可想而知了.肯定是溢出了.就用int型来接收结果别说10000,100就会产生溢出.即使不溢出我想那肯定也是见很浪费资源的事情.我们可以做一个粗略的估计:每次函数调用就单变量所需的内存为:两个int型变量.n和result.在32位机器上占8B.那么10000就需要10001次函数调用.共需10001*8/1024 = 78KB.这只是变量所需的内存空间.其它的函数调用时函数入口地址等仍也需要占用内存空间。可见递归调用产生了一个不小的开销.

2 斐波那契数列

int Fib(int n)

{

if (n = 1)

{

return n;

}

else

{

return Fib(n-1) + Fib(n-2);

}

}

这个函数递归与上面的那个有些不同.每次调用函数都会引起另外两次的调用.最后将结果逐级返回.

我们可以看出这个递归函数同样在调用后买的函数时,前面的不退出而是在等待后面的结果,最后求出总结果。这就是递归.

3

#include iostream

using namespace std;

void recursiveFunction1(int num)

{

if (num 5)

{

cout num endl;

recursiveFunction1(num+1);

}

}

void recursiveFunction2(int num)

{

if (num 5)

{

recursiveFunction2(num+1);

cout num endl;

}

}

int main()

{

recursiveFunction1(0);

recursiveFunction2(0);

return 0;

}

运行结果:

1

2

3

4

4

3

2

1

该程序中有两个递归函数。传递同样的参数,但他们的输出结果刚好相反。理解这两个函数的调用过程可以很好的帮助我们理解递归:

我想能够把上面三个函数的递归调用过程理解了,你已经把递归调用理解的差不多了.并且从上面的递归调用中我们可以总结出递归的一个规律:他是逐级的调用,而在函数结束的时候是从最后面往前反序的结束.这种方式是很占用资源,也很费时的。但是有的时候使用递归写出来的程序很容易理解,很易读.

为什么使用递归:

1 有时候使用递归写出来的程序很容易理解,很易读.

2 有些问题只有递归能够解决.非递归的方法无法实现.如:汉诺塔.

递归的条件:

并不是说所有的问题都可以使用递归解决,他必须的满足一定的条件。即有一个出口点.也就是说当满足一定条件时,程序可以结束,从而完成递归调用,否则就陷入了无限的递归调用之中了.并且这个条件还要是可达到的.

递归有哪些优点:

易读,容易理解,代码一般比较短.

递归有哪些缺点:

占用内存资源多,费时,效率低下.

因此在我们写程序的时候不要轻易的使用递归,虽然他有他的优点,但是我们要在易读性和空间,效率上多做权衡.一般情况下我们还是使用非递归的方法解决问题.若一个算法非递归解法非常难于理解。我们使用递归也未尝不可.如:二叉树的遍历算法.非递归的算法很难与理解.而相比递归算法就容易理解很多.

对于递归调用的问题,我们在前一段时间写图形学程序时,其中有一个四连同填充算法就是使用递归的方法。结果当要填充的图形稍微大一些时,程序就自动关闭了.这不是一个人的问题,所有人写出来的都是这个问题.当时我们给与的解释就是堆栈溢出。就多次递归调用占用太多的内存资源致使堆栈溢出,程序没有内存资源执行下去,从而被操作系统强制关闭了.这是一个真真切切的例子。所以我们在使用递归的时候需要权衡再三.


文章题目:python递归函数画图 python递归函数画树
当前地址:http://gzruizhi.cn/article/hgihhi.html

其他资讯