189 8069 5689

nosql三大,nosql三大理论基石

大数据专业是什么?

您好,很高兴为您解答问题,大数据是本科专业。

专注于为中小企业提供成都网站建设、网站设计服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业桂平免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了近千家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。

1、数据科学与大数据技术属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。2、数据科学与大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才。3、 大数据(Big data)通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到 关系型数据库 用于分析时会花费过多时间和金钱。. 大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。

以上是我的全部回复,希望能够帮助到您,祝您生活愉快~

大数据三大核心技术:拿数据、算数据、卖数据!

大数据的由来

对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。

1

麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。

大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。

大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。

最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。

大数据的应用领域

大数据无处不在,大数据应用于各个行业,包括金融、 汽车 、餐饮、电信、能源、体能和 娱乐 等在内的 社会 各行各业都已经融入了大数据的印迹。

制造业,利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。

金融行业,大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。

汽车 行业,利用大数据和物联网技术的无人驾驶 汽车 ,在不远的未来将走入我们的日常生活。

互联网行业,借助于大数据技术,可以分析客户行为,进行商品推荐和针对性广告投放。

电信行业,利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。

能源行业,随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。

物流行业,利用大数据优化物流网络,提高物流效率,降低物流成本。

城市管理,可以利用大数据实现智能交通、环保监测、城市规划和智能安防。

体育 娱乐 ,大数据可以帮助我们训练球队,决定投拍哪种 题财的 影视作品,以及预测比赛结果。

安全领域,政府可以利用大数据技术构建起强大的国家安全保障体系,企业可以利用大数据抵御网络攻击,警察可以借助大数据来预防犯罪。

个人生活, 大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为习惯,为其提供更加周到的个性化服务。

大数据的价值,远远不止于此,大数据对各行各业的渗透,大大推动了 社会 生产和生活,未来必将产生重大而深远的影响。

大数据方面核心技术有哪些?

大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。首先给出一个通用化的大数据处理框架,主要分为下面几个方面:数据采集与预处理、数据存储、数据清洗、数据查询分析和数据可视化。

数据采集与预处理

对于各种来源的数据,包括移动互联网数据、社交网络的数据等,这些结构化和非结构化的海量数据是零散的,也就是所谓的数据孤岛,此时的这些数据并没有什么意义,数据采集就是将这些数据写入数据仓库中,把零散的数据整合在一起,对这些数据综合起来进行分析。数据采集包括文件日志的采集、数据库日志的采集、关系型数据库的接入和应用程序的接入等。在数据量比较小的时候,可以写个定时的脚本将日志写入存储系统,但随着数据量的增长,这些方法无法提供数据安全保障,并且运维困难,需要更强壮的解决方案。

Flume NG

Flume NG作为实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据,同时,对数据进行简单处理,并写到各种数据接收方(比如文本,HDFS,Hbase等)。Flume NG采用的是三层架构:Agent层,Collector层和Store层,每一层均可水平拓展。其中Agent包含Source,Channel和 Sink,source用来消费(收集)数据源到channel组件中,channel作为中间临时存储,保存所有source的组件信息,sink从channel中读取数据,读取成功之后会删除channel中的信息。

NDC

Logstash

Logstash是开源的服务器端数据处理管道,能够同时从多个来源采集数据、转换数据,然后将数据发送到您最喜欢的 “存储库” 中。一般常用的存储库是Elasticsearch。Logstash 支持各种输入选择,可以在同一时间从众多常用的数据来源捕捉事件,能够以连续的流式传输方式,轻松地从您的日志、指标、Web 应用、数据存储以及各种 AWS 服务采集数据。

Sqoop

Sqoop,用来将关系型数据库和Hadoop中的数据进行相互转移的工具,可以将一个关系型数据库(例如Mysql、Oracle)中的数据导入到Hadoop(例如HDFS、Hive、Hbase)中,也可以将Hadoop(例如HDFS、Hive、Hbase)中的数据导入到关系型数据库(例如Mysql、Oracle)中。Sqoop 启用了一个 MapReduce 作业(极其容错的分布式并行计算)来执行任务。Sqoop 的另一大优势是其传输大量结构化或半结构化数据的过程是完全自动化的。

流式计算

流式计算是行业研究的一个热点,流式计算对多个高吞吐量的数据源进行实时的清洗、聚合和分析,可以对存在于社交网站、新闻等的数据信息流进行快速的处理并反馈,目前大数据流分析工具有很多,比如开源的strom,spark streaming等。

Strom集群结构是有一个主节点(nimbus)和多个工作节点(supervisor)组成的主从结构,主节点通过配置静态指定或者在运行时动态选举,nimbus与supervisor都是Storm提供的后台守护进程,之间的通信是结合Zookeeper的状态变更通知和监控通知来处理。nimbus进程的主要职责是管理、协调和监控集群上运行的topology(包括topology的发布、任务指派、事件处理时重新指派任务等)。supervisor进程等待nimbus分配任务后生成并监控worker(jvm进程)执行任务。supervisor与worker运行在不同的jvm上,如果由supervisor启动的某个worker因为错误异常退出(或被kill掉),supervisor会尝试重新生成新的worker进程。

Zookeeper

Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。它的作用主要有配置管理、名字服务、分布式锁和集群管理。配置管理指的是在一个地方修改了配置,那么对这个地方的配置感兴趣的所有的都可以获得变更,省去了手动拷贝配置的繁琐,还很好的保证了数据的可靠和一致性,同时它可以通过名字来获取资源或者服务的地址等信息,可以监控集群中机器的变化,实现了类似于心跳机制的功能。

数据存储

Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。

HBase

HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。HBase是一种Key/Value系统,部署在hdfs上,克服了hdfs在随机读写这个方面的缺点,与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。

Phoenix

Phoenix,相当于一个Java中间件,帮助开发工程师能够像使用JDBC访问关系型数据库一样访问NoSQL数据库HBase。

Yarn

Yarn是一种Hadoop资源管理器,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。Yarn由下面的几大组件构成:一个全局的资源管理器ResourceManager、ResourceManager的每个节点代理NodeManager、表示每个应用的Application以及每一个ApplicationMaster拥有多个Container在NodeManager上运行。

Mesos

Mesos是一款开源的集群管理软件,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等应用架构。

Redis

Redis是一种速度非常快的非关系数据库,可以存储键与5种不同类型的值之间的映射,可以将存储在内存的键值对数据持久化到硬盘中,使用复制特性来扩展性能,还可以使用客户端分片来扩展写性能。

Atlas

Atlas是一个位于应用程序与MySQL之间的中间件。在后端DB看来,Atlas相当于连接它的客户端,在前端应用看来,Atlas相当于一个DB。Atlas作为服务端与应用程序通讯,它实现了MySQL的客户端和服务端协议,同时作为客户端与MySQL通讯。它对应用程序屏蔽了DB的细节,同时为了降低MySQL负担,它还维护了连接池。Atlas启动后会创建多个线程,其中一个为主线程,其余为工作线程。主线程负责监听所有的客户端连接请求,工作线程只监听主线程的命令请求。

Kudu

Kudu是围绕Hadoop生态圈建立的存储引擎,Kudu拥有和Hadoop生态圈共同的设计理念,它运行在普通的服务器上、可分布式规模化部署、并且满足工业界的高可用要求。其设计理念为fast analytics on fast data。作为一个开源的存储引擎,可以同时提供低延迟的随机读写和高效的数据分析能力。Kudu不但提供了行级的插入、更新、删除API,同时也提供了接近Parquet性能的批量扫描操作。使用同一份存储,既可以进行随机读写,也可以满足数据分析的要求。Kudu的应用场景很广泛,比如可以进行实时的数据分析,用于数据可能会存在变化的时序数据应用等。

在数据存储过程中,涉及到的数据表都是成千上百列,包含各种复杂的Query,推荐使用列式存储方法,比如parquent,ORC等对数据进行压缩。Parquet 可以支持灵活的压缩选项,显著减少磁盘上的存储。

数据清洗

MapReduce作为Hadoop的查询引擎,用于大规模数据集的并行计算,”Map(映射)”和”Reduce(归约)”,是它的主要思想。它极大的方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统中。

随着业务数据量的增多,需要进行训练和清洗的数据会变得越来越复杂,这个时候就需要任务调度系统,比如oozie或者azkaban,对关键任务进行调度和监控。

Oozie

Oozie是用于Hadoop平台的一种工作流调度引擎,提供了RESTful API接口来接受用户的提交请求(提交工作流作业),当提交了workflow后,由工作流引擎负责workflow的执行以及状态的转换。用户在HDFS上部署好作业(MR作业),然后向Oozie提交Workflow,Oozie以异步方式将作业(MR作业)提交给Hadoop。这也是为什么当调用Oozie 的RESTful接口提交作业之后能立即返回一个JobId的原因,用户程序不必等待作业执行完成(因为有些大作业可能会执行很久(几个小时甚至几天))。Oozie在后台以异步方式,再将workflow对应的Action提交给hadoop执行。

Azkaban

Azkaban也是一种工作流的控制引擎,可以用来解决有多个hadoop或者spark等离线计算任务之间的依赖关系问题。azkaban主要是由三部分构成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban将大多数的状态信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、认证、调度以及对工作流执行过程中的监控等;Azkaban Executor Server用来调度工作流和任务,记录工作流或者任务的日志。

流计算任务的处理平台Sloth,是网易首个自研流计算平台,旨在解决公司内各产品日益增长的流计算需求。作为一个计算服务平台,其特点是易用、实时、可靠,为用户节省技术方面(开发、运维)的投入,帮助用户专注于解决产品本身的流计算需求

数据查询分析

Hive

Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。Hive本身不存储和计算数据,它完全依赖于HDFS和MapReduce。可以将Hive理解为一个客户端工具,将SQL操作转换为相应的MapReduce jobs,然后在hadoop上面运行。Hive支持标准的SQL语法,免去了用户编写MapReduce程序的过程,它的出现可以让那些精通SQL技能、但是不熟悉MapReduce 、编程能力较弱与不擅长Java语言的用户能够在HDFS大规模数据集上很方便地利用SQL 语言查询、汇总、分析数据。

Hive是为大数据批量处理而生的,Hive的出现解决了传统的关系型数据库(MySql、Oracle)在大数据处理上的瓶颈 。Hive 将执行计划分成map-shuffle-reduce-map-shuffle-reduce…的模型。如果一个Query会被编译成多轮MapReduce,则会有更多的写中间结果。由于MapReduce执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。在Hive的运行过程中,用户只需要创建表,导入数据,编写SQL分析语句即可。剩下的过程由Hive框架自动的完成。

Impala

Impala是对Hive的一个补充,可以实现高效的SQL查询。使用Impala来实现SQL on Hadoop,用来进行大数据实时查询分析。通过熟悉的传统关系型数据库的SQL风格来操作大数据,同时数据也是可以存储到HDFS和HBase中的。Impala没有再使用缓慢的Hive+MapReduce批处理,而是通过使用与商用并行关系数据库中类似的分布式查询引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分组成),可以直接从HDFS或HBase中用SELECT、JOIN和统计函数查询数据,从而大大降低了延迟。Impala将整个查询分成一执行计划树,而不是一连串的MapReduce任务,相比Hive没了MapReduce启动时间。

Hive 适合于长时间的批处理查询分析,而Impala适合于实时交互式SQL查询,Impala给数据人员提供了快速实验,验证想法的大数据分析工具,可以先使用Hive进行数据转换处理,之后使用Impala在Hive处理好后的数据集上进行快速的数据分析。总的来说:Impala把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的map-reduce模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。但是Impala不支持UDF,能处理的问题有一定的限制。

Spark

Spark拥有Hadoop MapReduce所具有的特点,它将Job中间输出结果保存在内存中,从而不需要读取HDFS。Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。

Nutch

Nutch 是一个开源Java 实现的搜索引擎。它提供了我们运行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬虫。

Solr

Solr用Java编写、运行在Servlet容器(如Apache Tomcat或Jetty)的一个独立的企业级搜索应用的全文搜索服务器。它对外提供类似于Web-service的API接口,用户可以通过http请求,向搜索引擎服务器提交一定格式的XML文件,生成索引;也可以通过Http Get操作提出查找请求,并得到XML格式的返回结果。

Elasticsearch

Elasticsearch是一个开源的全文搜索引擎,基于Lucene的搜索服务器,可以快速的储存、搜索和分析海量的数据。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。

还涉及到一些机器学习语言,比如,Mahout主要目标是创建一些可伸缩的机器学习算法,供开发人员在Apache的许可下免费使用;深度学习框架Caffe以及使用数据流图进行数值计算的开源软件库TensorFlow等,常用的机器学习算法比如,贝叶斯、逻辑回归、决策树、神经网络、协同过滤等。

数据可视化

对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。主流的BI平台比如,国外的敏捷BI Tableau、Qlikview、PowrerBI等,国内的SmallBI和新兴的网易有数等。

在上面的每一个阶段,保障数据的安全是不可忽视的问题。

基于网络身份认证的协议Kerberos,用来在非安全网络中,对个人通信以安全的手段进行身份认证,它允许某实体在非安全网络环境下通信,向另一个实体以一种安全的方式证明自己的身份。

控制权限的ranger是一个Hadoop集群权限框架,提供操作、监控、管理复杂的数据权限,它提供一个集中的管理机制,管理基于yarn的Hadoop生态圈的所有数据权限。可以对Hadoop生态的组件如Hive,Hbase进行细粒度的数据访问控制。通过操作Ranger控制台,管理员可以轻松的通过配置策略来控制用户访问HDFS文件夹、HDFS文件、数据库、表、字段权限。这些策略可以为不同的用户和组来设置,同时权限可与hadoop无缝对接。

简单说有三大核心技术:拿数据,算数据,卖数据。

newsql和nosql的区别和联系

在大数据时代,“多种架构支持多类应用”成为数据库行业应对大数据的基本思路,数据库行业出现互为补充的三大阵营,适用于事务处理应用的OldSQL、适用于数据分析应用的NewSQL和适用于互联网应用的NoSQL。但在一些复杂的应用场景中,单一数据库架构都不能完全满足应用场景对海量结构化和非结构化数据的存储管理、复杂分析、关联查询、实时性处理和控制建设成本等多方面的需要,因此不同架构数据库混合部署应用成为满足复杂应用的必然选择。不同架构数据库混合使用的模式可以概括为:OldSQL+NewSQL、OldSQL+NoSQL、NewSQL+NoSQL三种主要模式。下面通过三个案例对不同架构数据库的混合应用部署进行介绍。

OldSQL+NewSQL 在数据中心类应用中混合部署

采用OldSQL+NewSQL模式构建数据中心,在充分发挥OldSQL数据库的事务处理能力的同时,借助NewSQL在实时性、复杂分析、即席查询等方面的独特优势,以及面对海量数据时较强的扩展能力,满足数据中心对当前“热”数据事务型处理和海量历史“冷”数据分析两方面的需求。OldSQL+NewSQL模式在数据中心类应用中的互补作用体现在,OldSQL弥补了NewSQL不适合事务处理的不足,NewSQL弥补了OldSQL在海量数据存储能力和处理性能方面的缺陷。

商业银行数据中心采用OldSQL+NewSQL混合部署方式搭建,OldSQL数据库满足各业务系统数据的归档备份和事务型应用,NewSQL MPP数据库集群对即席查询、多维分析等应用提供高性能支持,并且通过MPP集群架构实现应对海量数据存储的扩展能力。

商业银行数据中心存储架构

与传统的OldSQL模式相比,商业银行数据中心采用OldSQL+NewSQL混合搭建模式,数据加载性能提升3倍以上,即席查询和统计分析性能提升6倍以上。NewSQL MPP的高可扩展性能够应对新的业务需求,可随着数据量的增长采用集群方式构建存储容量更大的数据中心。

OldSQL+NoSQL 在互联网大数据应用中混合部署

在互联网大数据应用中采用OldSQL+NoSQL混合模式,能够很好的解决互联网大数据应用对海量结构化和非结构化数据进行存储和快速处理的需求。在诸如大型电子商务平台、大型SNS平台等互联网大数据应用场景中,OldSQL在应用中负责高价值密度结构化数据的存储和事务型处理,NoSQL在应用中负责存储和处理海量非结构化的数据和低价值密度结构化数据。OldSQL+NoSQL模式在互联网大数据应用中的互补作用体现在,OldSQL弥补了NoSQL在ACID特性和复杂关联运算方面的不足,NoSQL弥补了OldSQL在海量数据存储和非结构化数据处理方面的缺陷。

数据魔方是淘宝网的一款数据产品,主要提供行业数据分析、店铺数据分析。淘宝数据产品在存储层采用OldSQL+NoSQL混合模式,由基于MySQL的分布式关系型数据库集群MyFOX和基于HBase的NoSQL存储集群Prom组成。由于OldSQL强大的语义和关系表达能力,在应用中仍然占据着重要地位,目前存储在MyFOX中的统计结果数据已经达到10TB,占据着数据魔方总数据量的95%以上。另一方面,NoSQL作为SQL的有益补充,解决了OldSQL数据库无法解决的全属性选择器等问题。

淘宝海量数据产品技术架构

基于OldSQL+NoSQL混合架构的特点,数据魔方目前已经能够提供压缩前80TB的数据存储空间,支持每天4000万的查询请求,平均响应时间在28毫秒,足以满足未来一段时间内的业务增长需求。

NewSQL+NoSQL 在行业大数据应用中混合部署

行业大数据与互联网大数据的区别在于行业大数据的价值密度更高,并且对结构化数据的实时处理、复杂的多表关联分析、即席查询、数据强一致性等都比互联网大数据有更高的要求。行业大数据应用场景主要是分析类应用,如:电信、金融、政务、能源等行业的决策辅助、预测预警、统计分析、经营分析等。

在行业大数据应用中采用NewSQL+NoSQL混合模式,充分利用NewSQL在结构化数据分析处理方面的优势,以及NoSQL在非结构数据处理方面的优势,实现NewSQL与NoSQL的功能互补,解决行业大数据应用对高价值结构化数据的实时处理、复杂的多表关联分析、即席查询、数据强一致性等要求,以及对海量非结构化数据存储和精确查询的要求。在应用中,NewSQL承担高价值密度结构化数据的存储和分析处理工作,NoSQL承担存储和处理海量非结构化数据和不需要关联分析、Ad-hoc查询较少的低价值密度结构化数据的工作。

当前电信运营商在集中化BI系统建设过程中面临着数据规模大、数据处理类型多等问题,并且需要应对大量的固定应用,以及占统计总数80%以上的突发性临时统计(ad-hoc)需求。在集中化BI系统的建设中采用NewSQL+NoSQL混搭的模式,充分利用NewSQL在复杂分析、即席查询等方面处理性能的优势,及NoSQL在非结构化数据处理和海量数据存储方面的优势,实现高效低成本。

集中化BI系统数据存储架构

集中化BI系统按照数据类型和处理方式的不同,将结构化数据和非结构化数据分别存储在不同的系统中:非结构化数据在Hadoop平台上存储与处理;结构化、不需要关联分析、Ad-hoc查询较少的数据保存在NoSQL数据库或Hadoop平台;结构化、需要关联分析或经常ad-hoc查询的数据,保存在NewSQL MPP数据库中,短期高价值数据放在高性能平台,中长期放在低成本产品中。

结语

当前信息化应用的多样性、复杂性,以及三种数据库架构各自所具有的优势和局限性,造成任何一种架构的数据库都不能完全满足应用需求,因此不同架构数据库混合使用,从而弥补其他架构的不足成为必然选择。根据应用场景采用不同架构数据库进行组合搭配,充分发挥每种架构数据库的特点和优势,并且与其他架构数据库形成互补,完全涵盖应用需求,保证数据资源的最优化利用,将成为未来一段时期内信息化应用主要采用的解决方式。

目前在国内市场上,OldSQL主要为Oracle、IBM等国外数据库厂商所垄断,达梦、金仓等国产厂商仍处于追赶状态;南大通用凭借国产新型数据库GBase 8a异军突起,与EMC的Greenplum和HP的Vertica跻身NewSQL市场三强;NoSQL方面用户则大多采用Hadoop开源方案。

大数据零基础能自学吗好就业吗

一、大数据前景

大数据技术适应现代社会的发展,从数据量巨大、结构复杂、类型众多的数据中,快速获取有价值的信息,被认为是“未来的新石油”,在社会生产、流通、分配、消费活动以及经济运行机制等方面发挥着重要的作用。

大数据发展呈全球化的趋势,大数据前景大好,是后面至少10年的热点。任何系统、任何公司的核心都是数据。现在社会的大数据公司主要可以分为三大类,分别是技术型、创新型、数据型这三种,不论是哪一种类都是现代社会不可获缺的。现在流行hadoop,流行内存计算、内存数据网格等等,以后还会有更多的概念和技术,但本质都是为大数据服务。数据TB、PB、EB、ZB、YB的飙升,将诞生系列新的技术和产业,大数据从业人员将是最有发展前景的职业。

二、大数据薪资待遇

目前出现在各类招聘平台上与数据分析相关的招聘需求比去年同期相比,增长率高达67%;大数据相关高级职位的薪酬与其他同类技术职位相比平均高出43%以上。各行各业对大数据人才的需求,以及技术从业者希望跻身大数据高级人才的需求变得越来越强烈。

三、零基础自学大数据

想要成为合格的大数据分析师,就需要精通SQL语句并对redis,mongodb等nosql数据库有一定经验;.熟练使用数理统计、数据分析、数据挖掘工具软件(SAS、R、python语言等的一种或多种),能熟练使用SQL读取数据和熟练操作excel。

其次大数据分析师还需要精通java或scala语言,精通spark,hadoop,kafka,hive,hbase,zookeeper等大数据相关技术,会用逻辑回归、神经网络、决策树、聚类等的一种或多种建模方法;熟悉Linux操作系统,了解数据结构和算法等等。

想要成为大数据分析师需要掌握的技术不在少数,并且学习难度也是有的。自学的话,成功率会很低,不少自学的朋友,越来越学不会,而最终放弃学习,并且学习过程会比较辛苦。而且自学会缺少实战项目,大数据分析不是纸上谈兵类型的技术。

参加大数据培训这种方式是被绝大部分人所选择的,因为参加大数据培训跟着老师学习的话,不仅能学到更多的知识还提高了学习的效率,就业有保障。

零基础能自学大数据分析吗?能是能,但是你能不能学会,学多久会放弃就说不准了,因此对于想要学习大数据的小伙伴小编还是建议大家参加大数据培训学习比较好。

全球最具影响力的大数据企业排行榜

全球最具影响力的大数据企业排行榜

目前全球大数据企业主要分为两大阵营。一部分属于单纯以大数据技术为核心的新兴企业,希望为市场带来创新方案并推动技术发展。另有一些原本打理数据库/数据仓储业务的老牌厂商,他们打算利用自身优势地位冲击大数据领域,将现有安装基础及产品线口碑推广到新一轮技术浪潮当中。下面我们就一起来看今天的十五家大数据企业名单,其中十家早已名满天下、另外五家则属初来乍到。

1、IBM

根据Wikibon发布的报告,作为2012年大数据业务营收成绩最好的公司,IBM过去一年从大数据相关产品及服务中获得了13亿美元收益。其具体产品包括服务器与存储硬件、数据库软件、分析应用程序以及相关服务等。在IBM围绕大数据开发出的产品中,DB2、Informix与InfoSphere数据库平台、Cognos与SPSS分析应用可谓最为知名。IBM同时也为Hadoop开源数据分析平台提供支持。

2、惠普

惠普在2012年获得的大数据营收名列第二,总值为6.64亿美元。这家供应商还提供与之相关的硬件、软件以及服务,其最为知名的方案当数Vertica分析平台。

3、Teradata

Teradata在2012年获得全球第三大大数据厂商头衔,其营收总额达4.35亿美元。Teradata凭借自家硬件平台、数据库以及分析软件而声名远播。它同时针对零售及运输行业推出了专门的分析工具。

4、甲骨文

尽管在大家眼中,甲骨文一直以其冠绝群雄的数据库产品闻名,但事实上他们也是大数据领域的主要竞逐者之一。其甲骨文大数据设备将英特尔服务器、Cloudera Hadoop发行版以及甲骨文的NoSQL数据库结合到了一起。2012年甲骨文名列大数据企业榜单第五位,营收总额为4.15亿美元。

5、SAP

SAP推出了一系列分析工具,但其中知名度最高的当数其HANA内存内数据库。2012年该公司在大数据企业竞争中位居第六,营收总额为3.68亿美元。

6、EMC

EMC一方面帮助客户保存并分析大数据,另外也充当着大数据分析智囊“营销科学实验室”的所在地——这家实验室专门分析营销类数据。EMC推出的最新爆炸性消息是与VMware及通用电气一道支持Pivotal公司。Pivotal将对Hadoop与EMC的Greenplum数据库与HAWQ查询工具进行整合。EMC在2012年的大数据企业排行榜中位列第七,营收总额为3.36亿美元。

7、Amazon

Amazon向来以企业云平台闻名于世,但同时也推出过一系列大数据产品,其中包括基于Hadoop的Elastic MapReduce、DynamoDB大数据数据库以及能够与Amazon Web Services顺利协作的Redshift规模化并行数据仓储方案。

8、微软

微软的大数据发展战略可谓雄心勃勃,包括与Hortonworks建立合作关系、建立一家大数据新兴企业以及推出基于Hortonworks数据平台的HDInsights工具。微软的SQL Server数据库也颇具知名度,且于2012年的大数据企业比拼之中位列第九,营收总额为1.96亿美元。

9、谷歌

谷歌公司推出的大数据产品包括BigQuery——一款基于云的大数据分析平台。该公司在过去一年中拿下3600万美元大数据营收。

10、VMware

VMware向来以云计算及虚拟化解决方案著称,不过近来也开始逐步踏入大数据领域。今年六月虚拟巨头公布的VMware vSphere大数据扩展版就很说明问题,这套方案使得vSphere能够控制Hadoop部署并帮助企业用户简化大数据项目启动流程。VMware在过去一年中获得3200万美元大数据营收,几乎与谷歌公司持平。

11、业界新生代:Cloudera

相信目前已经没人敢在列举顶级大数据供应商时漏掉Cloudera。这家新兴企业获得1.41亿美元风险投资,支持阵营中甚至包括谷歌、Facebook、甲骨文以及雅虎等在大数据领域赫赫有名的老将。该公司于2008年首次为企业客户带来Apache Hadoop平台。

12、Hortonworks

Hortonworks是另一家Hadoop供应商,并在2011年从雅虎公司分离出来之后获得超过7000万美元的风险投资支持。它在发展中将矛头直指Cloudera,这位年轻选手背后则站着微软、Rackspace、红帽、Teradata等多家战略合作伙伴。

13、Splunk

根据WIkibon的统计,Splunk是目前纯大数据供应商中占据市场份额最大的企业,2012年全年营收总额达1.86亿美元。该公司主要关注机器数据分析业务。

14、10Gen

10Gen最具影响力的得意佳作要数其开源MongoDB——一款业界领先的NoSQL数据库。该公司的战略投资伙伴包括英特尔、红帽以及In-Q-Tel。10Gen去年在纯Hadoop及NoSQL业务企业中名列第三,营收总额为3600万美元。

15、MapR

大家想必听说过MapR推出的NoSQL数据库M7,这家公司与Amazon的云平台及谷歌计算引擎达成了协作关系。去年MapR在纯Hadoop与NoSQL业务企业中位列第四,营收总额为2300万美元。

以上是小编为大家分享的关于全球最具影响力的大数据企业排行榜的相关内容,更多信息可以关注环球青藤分享更多干货

大数据专业主要学什么?

大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。

此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。

以中国人民大学为例:

基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。

必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。

选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。

大数据岗位:

1、大数据系统架构师

大数据平台搭建、系统设计、基础设施。

技能:计算机体系结构、网络架构、编程范式、文件系统、分布并行处理等。

2、大数据系统分析师

面向实际行业领域,利用大数据技术进行数据安全生命周期管理、分析和应用。

技能:人工智能、机器学习、数理统计、矩阵计算、优化方法。

3、hadoop开发工程师。

解决大数据存储问题。

4、数据分析师

不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。

5、数据挖掘工程师

做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapReduce写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。


分享题目:nosql三大,nosql三大理论基石
标题URL:http://gzruizhi.cn/article/hoidhs.html

其他资讯