189 8069 5689

如何使用python计算百分位数实现数据分箱-创新互联

小编给大家分享一下如何使用python计算百分位数实现数据分箱,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

创新互联为企业级客户提高一站式互联网+设计服务,主要包括网站建设、成都网站建设app软件开发公司小程序开发、宣传片制作、LOGO设计等,帮助客户快速提升营销能力和企业形象,创新互联各部门都有经验丰富的经验,可以确保每一个作品的质量和创作周期,同时每年都有很多新员工加入,为我们带来大量新的创意。 

Python的优点有哪些

1、简单易用,与C/C++、Java、C# 等传统语言相比,Python对代码格式的要求没有那么严格;2、Python属于开源的,所有人都可以看到源代码,并且可以被移植在许多平台上使用;3、Python面向对象,能够支持面向过程编程,也支持面向对象编程;4、Python是一种解释性语言,Python写的程序不需要编译成二进制代码,可以直接从源代码运行程序;5、Python功能强大,拥有的模块众多,基本能够实现所有的常见功能。

百分位数,如果将一组数据从小到大排序,并计算相应的累计百分位,则某一百分位所对应数据的值就称为这一百分位的百分位数。可表示为:一组n个观测值按数值大小排列。如,处于p%位置的值称第p百分位数。

因为百分位数是采用等分的方式划分数据,因此也可用此方法进行等频分箱。

import pandas as pd
import numpy as np
import random
t=pd.DataFrame(columns=['l','s'])
#随机生成1000个0到999整数
t['l']=[random.randint(0,999) for _range in range(1000)]
#定义s为1,便于统计
t['s']=1
#通过np.percentile找到分位点
l_bin=[]
for i in range(0,101,10):
 l_bin.append(np.percentile(t['l'],i))
#分位点最后一个数加上一个极小的数,否则切分后数字999会标记为nan
l_bin[-1]+=1/1e10
print('分位点:',np.array(l_bin).round(2))
#对随机数进行切分,right=False时左闭右开
t['box']=pd.cut(t['l'],l_bin,right=False)
tj=t.groupby('box')['s'].agg('sum')
print('分箱统计')
print(tj)
#生成新的标签
label=[]
for i in range(len(l_bin)-1):
 label.append(str(l_bin[i].round(4))+'+')
#原标签和自定义的新标签生成字典 
list_box_td=list(set(t['box']))
list_box_td.sort()
dict_t=dict(zip(list_box_td,label))
#根据字典进行替换
t['new_box']=t['box'].replace(dict_t)
print('新分箱统计')
tj=t.groupby('new_box')['s'].agg('sum')
print(tj)
del t['s']
print(t.head())

输出结果:

分位点: [ 0. 90.9 194.6 290. 386. 473.5 589. 688. 783.2 884.2
 997. ]
分箱统计
box
[0.0, 90.9)  100
[90.9, 194.6)  100
[194.6, 290.0)  99
[290.0, 386.0)  99
[386.0, 473.5) 102
[473.5, 589.0)  99
[589.0, 688.0) 100
[688.0, 783.2) 101
[783.2, 884.2) 100
[884.2, 997.0) 100
Name: s, dtype: int64
新分箱统计
new_box
0.0+  100
194.6+  99
290.0+  99
386.0+ 102
473.5+  99
589.0+ 100
688.0+ 101
783.2+ 100
884.2+ 100
90.9+  100
Name: s, dtype: int64
  l    box new_box
0 253 [194.6, 290.0) 194.6+
1 468 [386.0, 473.5) 386.0+
2 130 [90.9, 194.6) 90.9+
3 476 [473.5, 589.0) 473.5+
4 656 [589.0, 688.0) 589.0+

可以看出每个分箱内,约有100个数字。根据这个方法,可以自定义一些标签。

补充拓展:python 计算动态时点的百分位数

【说明】

1、动态时点:每次计算的数据框为截止于当前行的数据,即累计行(多次计算);

2、静态时点(当前时间):计算的数据框为所有行(一次计算);

【代码】

test = pd.DataFrame(np.random.randint(1, 10, size=10), columns=['value']) # 生成[1,10]的随机整数
test['pct_sf'] = test.index.map(lambda x: test.ix[:x].value.rank(pct=True)[x]) # 动态时点
test['pct'] = test.value.rank(pct=True) # 当前时点
test

如何使用python计算百分位数实现数据分箱

以上是“如何使用python计算百分位数实现数据分箱”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联成都网站设计公司行业资讯频道!

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


分享名称:如何使用python计算百分位数实现数据分箱-创新互联
路径分享:http://gzruizhi.cn/article/igdse.html

其他资讯