189 8069 5689

如何进行Spark中MLlib的本质分析

如何进行Spark中MLlib的本质分析,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。

成都创新互联公司2013年开创至今,是专业互联网技术服务公司,拥有项目成都网站制作、成都做网站网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元涞水做网站,已为上家服务,为涞水各地企业和个人服务,联系电话:18982081108

org.apache.spark.ml(http://spark.apache.org/docs/latest/ml-guide.html )

org.apache.spark.ml.attribute
org.apache.spark.ml.classification
org.apache.spark.ml.clustering
org.apache.spark.ml.evaluation
org.apache.spark.ml.feature
org.apache.spark.ml.param
org.apache.spark.ml.recommendation
org.apache.spark.ml.regression
org.apache.spark.ml.source.libsvm
org.apache.spark.ml.tree
org.apache.spark.ml.tuning
org.apache.spark.ml.util

org.apache.spark.mllib  (http://spark.apache.org/docs/latest/mllib-guide.html )

org.apache.spark.mllib.classification
org.apache.spark.mllib.clustering
org.apache.spark.mllib.evaluation
org.apache.spark.mllib.feature
org.apache.spark.mllib.fpm
org.apache.spark.mllib.linalg
org.apache.spark.mllib.linalg.distributed
org.apache.spark.mllib.pmml
org.apache.spark.mllib.random
org.apache.spark.mllib.rdd
org.apache.spark.mllib.recommendation
org.apache.spark.mllib.regression
org.apache.spark.mllib.stat
org.apache.spark.mllib.stat.distributed
org.apache.spark.mllib.stat.test
org.apache.spark.mllib.tree
org.apache.spark.mllib.tree.configuration
org.apache.spark.mllib.tree.impurity
org.apache.spark.mllib.tree.loss
org.apache.spark.mllib.tree.model
org.apache.spark.mllib.util

ML概念

DataFrame: Spark ML uses DataFrame from Spark SQL as an ML dataset, which can hold a variety of data types. E.g., a DataFrame could have different columns storing text, feature vectors, true labels, and predictions.
Transformer: A Transformer is an algorithm which can transform one DataFrame into another DataFrame. E.g., an ML model is a Transformer which transforms DataFrame with features into a DataFrame with predictions.
Estimator: An Estimator is an algorithm which can be fit on a DataFrame to produce a Transformer. E.g., a learning algorithm is an Estimator which trains on a DataFrame and produces a model.
Pipeline: A Pipeline chains multiple Transformers and Estimators together to specify an ML workflow.
Parameter: All Transformers and Estimators now share a common API for specifying parameters.

ML分类和回归

Classification
	Logistic regression
	Decision tree classifier
	Random forest classifier
	Gradient-boosted tree classifier
	Multilayer perceptron classifier
	One-vs-Rest classifier (a.k.a. One-vs-All)
Regression
	Linear regression
	Decision tree regression
	Random forest regression
	Gradient-boosted tree regression
	Survival regression
Decision trees
Tree Ensembles
	Random Forests
	Gradient-Boosted Trees (GBTs)

ML聚类

K-means
Latent Dirichlet allocation (LDA)

MLlib 数据类型

Local vector
Labeled point
Local matrix
Distributed matrix
	RowMatrix
	IndexedRowMatrix
	CoordinateMatrix
	BlockMatrix

MLlib 分类和回归

Binary Classification: linear SVMs, logistic regression, decision trees, random forests, gradient-boosted trees, naive Bayes
Multiclass Classification:logistic regression, decision trees, random forests, naive Bayes
Regression:linear least squares, Lasso, ridge regression, decision trees, random forests, gradient-boosted trees, isotonic regression

MLlib 聚类

K-means
Gaussian mixture
Power iteration clustering (PIC,多用于图像识别)
Latent Dirichlet allocation (LDA,多用于主题分类)
Bisecting k-means
Streaming k-means

MLlib Models

DecisionTreeModel
DistributedLDAModel
GaussianMixtureModel
GradientBoostedTreesModel
IsotonicRegressionModel
KMeansModel
LassoModel
LDAModel
LinearRegressionModel
LocalLDAModel
LogisticRegressionModel
MatrixFactorizationModel
NaiveBayesModel
PowerIterationClusteringModel
RandomForestModel
RidgeRegressionModel
StreamingKMeansModel
SVMModel
Word2VecModel

Example

import org.apache.spark.ml.classification.LogisticRegression 
import org.apache.spark.ml.param.ParamMap 
import org.apache.spark.mllib.linalg.{Vector, Vectors} 
import org.apache.spark.sql.Row 

val training = sqlContext.createDataFrame(Seq(   (1.0, Vectors.dense(0.0, 1.1, 0.1)),   (0.0, Vectors.dense(2.0, 1.0, -1.0)),   (0.0, Vectors.dense(2.0, 1.3, 1.0)),   (1.0, Vectors.dense(0.0, 1.2, -0.5)) ))
    .toDF("label", "features") 
val lr = new LogisticRegression()
println("LogisticRegression parameters:\n" + lr.explainParams() + "\n") 

lr.setMaxIter(10).setRegParam(0.01) 
val model1 = lr.fit(training) 
println("Model 1 was fit using parameters: " + model1.parent.extractParamMap) 

val paramMap = ParamMap(lr.maxIter -> 20)
    .put(lr.maxIter, 30)
    .put(lr.regParam -> 0.1, lr.threshold -> 0.55)
val paramMap2 = ParamMap(lr.probabilityCol -> "myProbability") 
val paramMapCombined = paramMap ++ paramMap2
val model2 = lr.fit(training, paramMapCombined)
println("Model 2 was fit using parameters: " + model2.parent.extractParamMap)

test = sqlContext.createDataFrame(Seq(   (1.0, Vectors.dense(-1.0, 1.5, 1.3)),   (0.0, Vectors.dense(3.0, 2.0, -0.1)),   (1.0, Vectors.dense(0.0, 2.2, -1.5)) ))
    .toDF("label", "features")
model2.transform(test)
    .select("features", "label", "myProbability", "prediction")
    .collect()
    .foreach { case Row(features: Vector, label: Double, prob: Vector, prediction: Double) => println(s"($features, $label) -> prob=$prob, prediction=$prediction")   }

看完上述内容,你们掌握如何进行Spark中MLlib的本质分析的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注创新互联行业资讯频道,感谢各位的阅读!


分享标题:如何进行Spark中MLlib的本质分析
链接URL:http://gzruizhi.cn/article/iiioop.html

其他资讯