189 8069 5689

HadoopMultipleOutputs如何输出到多个文件中

这篇文章主要介绍Hadoop MultipleOutputs如何输出到多个文件中,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

10多年的云霄网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。全网营销推广的优势是能够根据用户设备显示端的尺寸不同,自动调整云霄建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联公司从事“云霄网站设计”,“云霄网站推广”以来,每个客户项目都认真落实执行。

 Hadoop MultipleOutputs输出到多个文件中的实现方法

1.输出到多个文件或多个文件夹:

驱动中不需要额外改变,只需要在MapClass或Reduce类中加入如下代码

private MultipleOutputs mos;
public void setup(Context context) throws IOException,InterruptedException {
  mos = new MultipleOutputs(context);
}
public void cleanup(Context context) throws IOException,InterruptedException {
  mos.close();
}

然后就可以用mos.write(Key key,Value value,String baseOutputPath)代替context.write(key, value);

在MapClass或Reduce中使用,输出时也会有默认的文件part-m-00*或part-r-00*,不过这些文件是无内容的,大小为0. 而且只有part-m-00*会传给Reduce。

注意:multipleOutputs.write(key, value, baseOutputPath)方法的第三个函数表明了该输出所在的目录(相对于用户指定的输出目录)。

如果baseOutputPath不包含文件分隔符“/”,那么输出的文件格式为baseOutputPath-r-nnnnn(name-r-nnnnn);
如果包含文件分隔符“/”,例如baseOutputPath=“029070-99999/1901/part”,那么输出文件则为029070-99999/1901/part-r-nnnnn

2.案例-需求

需求,下面是有些测试数据,要对这些数据按类目输出到output中:

1512,iphone5s,4英寸,指纹识别,A7处理器,64位,M7协处理器,低功耗

1512,iphone5,4英寸,A6处理器,IOS7

1512,iphone4s,3.5英寸,A5处理器,双核,经典

50019780,ipad,9.7英寸,retina屏幕,丰富的应用

50019780,yoga,联想,待机18小时,外形独特

50019780,nexus 7,华硕&google,7英寸

50019780,ipad mini 2,retina显示屏,苹果,7.9英寸

1101,macbook air,苹果超薄,OS X mavericks

1101,macbook pro,苹果,OS X lion

1101,thinkpad yoga,联想,windows 8,超级本

3.Mapper程序:

package cn.edu.bjut.multioutput;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class MultiOutPutMapper extends Mapper {

  @Override
  protected void map(LongWritable key, Text value, Context context)
      throws IOException, InterruptedException {
    String line = value.toString().trim();
    if(null != line && 0 != line.length()) {
      String[] arr = line.split(",");
      context.write(new IntWritable(Integer.parseInt(arr[0])), value);
    }
  }

}

4.Reducer程序:

package cn.edu.bjut.multioutput;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;

public class MultiOutPutReducer extends
    Reducer {

  private MultipleOutputs multipleOutputs = null;

  @Override
  protected void reduce(IntWritable key, Iterable values, Context context)
      throws IOException, InterruptedException {
    for(Text text : values) {
      multipleOutputs.write("KeySpilt", NullWritable.get(), text, key.toString()+"/");
      multipleOutputs.write("AllPart", NullWritable.get(), text);
    }
  }

  @Override
  protected void setup(Context context)
      throws IOException, InterruptedException {
    multipleOutputs = new MultipleOutputs(context);
  }

  @Override
  protected void cleanup(Context context)
      throws IOException, InterruptedException {
    if(null != multipleOutputs) {
      multipleOutputs.close();
      multipleOutputs = null;
    }
  }


}

5.主程序:

package cn.edu.bjut.multioutput;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class MainJob {
  public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    Job job = new Job(conf, "aaa");
    job.setJarByClass(MainJob.class);

    job.setMapperClass(MultiOutPutMapper.class);
    job.setMapOutputKeyClass(IntWritable.class);
    job.setMapOutputValueClass(Text.class);

    job.setReducerClass(MultiOutPutReducer.class);
    job.setOutputKeyClass(NullWritable.class);
    job.setOutputValueClass(Text.class);

    FileInputFormat.addInputPath(job, new Path(args[0]));

    MultipleOutputs.addNamedOutput(job, "KeySpilt", TextOutputFormat.class, NullWritable.class, Text.class);
    MultipleOutputs.addNamedOutput(job, "AllPart", TextOutputFormat.class, NullWritable.class, Text.class);

    Path outPath = new Path(args[1]);
    FileSystem fs = FileSystem.get(conf);
    if(fs.exists(outPath)) {
      fs.delete(outPath, true);
    }
    FileOutputFormat.setOutputPath(job, outPath);

    job.waitForCompletion(true);
  }
}

以上是“Hadoop MultipleOutputs如何输出到多个文件中”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注创新互联行业资讯频道!


本文题目:HadoopMultipleOutputs如何输出到多个文件中
转载来源:http://gzruizhi.cn/article/jipoih.html

其他资讯