189 8069 5689

pythonapply和map有什么区别

这篇文章将为大家详细讲解python apply和map有什么区别,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。

10年积累的成都网站建设、成都做网站经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先网站设计后付款的网站建设流程,更有方山免费网站建设让你可以放心的选择与我们合作。

在Python中如果想要对数据使用函数,可以借助apply()、applymap()、map()来应用函数,括号里面可以是直接函数式,或者自定义函数(def)或者匿名函数(lambad)。

import pandas as pd
import numpy as np
from pandas import DataFrame
from pandas import Series
df1= DataFrame({
                "sales1":[-1,2,3],
                "sales2":[3,-5,7],
               })
df1

python apply和map有什么区别

1、当我们要对数据框(DataFrame)的数据进行按行或按列操作时用apply()。

df1.apply(lambda x :x.max()-x.min(),axis=1)
#axis=1,表示按行对数据进行操作
#从下面的结果可以看出,我们使用了apply函数之后,系统自动按行找最大值和最小值计算,每一行输出一个值

0    4

1    7

2    4

dtype: int64

df1.apply(lambda x :x.max()-x.min(),axis=0)
#默认参数axis=0,表示按列对数据进行操作
#从下面的结果可以看出,我们使用了apply函数之后,系统自动按列找最大值和最小值计算,每一列输出一个值

sales1     4

sales2    12

dtype: int64

2、当我们要对数据框(DataFrame)的每一个数据进行操作时用applymap(),返回结果是DataFrame格式。

df1.applymap(lambda x : 1 if x>0 else 0)
#从下面的结果可以看出,我们使用了applymap函数之后,
#系统自动对每一个数据进行判断,判断之后输出结果

python apply和map有什么区别

3、当我们要对Series的每一个数据进行操作时用map()。

df1.sales1.map(lambda x : 1 if x>0 else 0)
#df1.sales1就是一个Series

0    0

1    1

2    1

Name: sales1, dtype: int64

4、总结:要对数据进行应用函数时,先看数据结构是DataFrame还是Series,Seriesj结构直接用map(),DataFrame结构的话再看是要按行还是按列进行操作来选择对应的函数即可。

关于python apply和map有什么区别就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。


当前标题:pythonapply和map有什么区别
网页URL:http://gzruizhi.cn/article/jpiioo.html

其他资讯