189 8069 5689

关于Python的面试问答题有哪些

这篇文章主要介绍“关于Python的面试问答题有哪些”,在日常操作中,相信很多人在关于Python的面试问答题有哪些问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”关于Python的面试问答题有哪些”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

在宜黄等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供成都做网站、成都网站建设、成都外贸网站建设 网站设计制作按需求定制设计,公司网站建设,企业网站建设,成都品牌网站建设,成都营销网站建设,外贸营销网站建设,宜黄网站建设费用合理。

1.列表和元组有什么区别?

在我进行过的每次python /数据科学访谈中,都曾问过我这个问题。 像手背一样知道答案。

  • 列表是可变的。 创建后可以对其进行修改。

  • 元组是不可变的。 一旦创建了元组,就不能对其进行更改

  • 列表有顺序。 它们是有序序列,通常是相同类型的对象。 即:按创建日期排序的所有用户名,[" Seth"," Ema"," Eli"]

  • 元组具有结构。 每个索引可能存在不同的数据类型。 即:内存中的数据库记录,(2," Ema","  2020–04–16")#id,名称,created_at

2.如何进行字符串插值?

在不导入Template类的情况下,有3种插值字符串的方法。

name = 'Chris'  # 1. f strings  print(f'Hello {name}')  # 2. % operator  print('Hey %s %s' % (name, name))  # 3. format  print( "My name is {}".format((name)))

3." is"和" =="有什么区别?

在我的python生涯的早期,我以为它们是相同的……您好错误。 因此,为了记录,检查身份和==检查相等性。

我们将通过一个例子。 创建一些列表并将其分配给名称。 请注意,b指向与下面的a相同的对象。

a = [1,2,3] b = a c = [1,2,3]

检查是否相等,并注意它们是否相等。

print(a == b) print(a == c) #=> True #=> True

但是它们具有相同的身份吗? 不。

print(a is b) print(a is c) #=> True #=> False

我们可以通过打印其对象ID进行验证。

print(id(a)) print(id(b)) print(id(c)) #=> 4369567560 #=> 4369567560 #=> 4369567624

c与a和b具有不同的ID。

4.什么是装饰器?

每次面试中我都被问到另一个问题。 它本身值得发布,但是如果您可以逐步编写自己的示例,那么您已经准备好了。

装饰器允许通过将现有功能传递给装饰器,从而将功能添加到现有功能,该装饰器将执行现有功能以及其他代码。

我们将编写一个装饰器,该装饰器会在调用另一个函数时记录日志。

编写装饰器函数。 这需要一个函数func作为参数。  它还定义了一个函数log_function_drawn,该函数调用func()并执行一些代码print(f'{func}被调用。')。  然后返回定义的函数

def logging(func):      def log_function_called():      print(f'{func} called.')          func()          return log_function_called

让我们编写其他函数,我们最终将装饰器添加到(但尚未)。

def my_name():      print('chris')  def friends_name():      print('naruto')  my_name() friends_name()  #=> chris #=> naruto

现在将装饰器添加到两者。

@logging def my_name():      print('chris')  @logging def friends_name():      print('naruto')  my_name() friends_name()  #=>  called. #=> chris#=>  called. #=> naruto

了解现在如何仅通过在其上面添加@logging就能轻松地将日志添加到我们编写的任何函数中。

5.解释范围功能

Range生成一个整数列表,有3种使用方式。

该函数接受1到3个参数。 请注意,我将每种用法都包装在列表推导中,以便我们看到生成的值。

range(stop):生成从0到" stop"整数的整数。

[i for i in range(10)]#=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

range(start,stop):生成从" start"到" stop"整数的整数。

[i for i in range(2,10)]#=> [2, 3, 4, 5, 6, 7, 8, 9]

range(start,stop,step):以" step"为间隔生成从" start"到" stop"的整数。

[i for i in range(2,10,2)]#=> [2, 4, 6, 8]

6.定义一个名为car的类,具有2个属性,即"颜色"和"速度"。 然后创建一个实例并返回速度。

class Car :      def __init__(self, color, speed):      self.color = color self.speed = speed  car = Car('red','100mph') car.speed #=> '100mph'

7. python中的实例,静态和类方法之间有什么区别?

实例方法:接受self参数并与类的特定实例相关。

静态方法:使用@staticmethod装饰器,与特定实例无关,并且是独立的(请勿修改类或实例属性)

类方法:接受cls参数并可以修改类本身

我们将说明一个虚构的CoffeeShop类的区别。

class CoffeeShop:      specialty = 'espresso'     def __init__(self, coffee_price):      self.coffee_price = coffee_price           # instance method    def make_coffee(self):      print(f'Making {self.specialty} for ${self.coffee_price}')           # static method      @staticmethod def check_weather():      print('Its sunny')           # class method    @classmethod      def change_specialty(cls, specialty):      cls.specialty = specialty          print(f'Specialty changed to {specialty}')

CoffeeShop类具有特殊属性,默认情况下设置为" espresso"。 CoffeeShop的每个实例都使用属性coffee_price初始化。  它还有3种方法,实例方法,静态方法和类方法。

让我们以coffee_price为5初始化咖啡店的实例。然后调用实例方法make_coffee。

coffee_shop = CoffeeShop('5') coffee_shop.make_coffee() #=> Making espresso for $5

现在调用静态方法。 静态方法无法修改类或实例状态,因此通常用于实用程序功能,例如,添加两个数字。 我们用我们的天气检查天气。 大!

coffee_shop.check_weather() #=> Its sunny

现在,我们使用class方法来修改咖啡店的特色菜,然后再修改make_coffee。

coffee_shop.change_specialty('drip coffee') #=> Specialty changed to drip coffee coffee_shop.make_coffee() #=> Making drip coffee for $5

请注意,make_coffee以前是用来制作意式浓缩咖啡的,但现在却可以制作滴滤咖啡!

8." func"和" func()"有什么区别?

这个问题的目的是看看您是否了解所有函数也是python中的对象。

def func():      print('Im a function')   func #=> function __main__.func>  func()  #=> Im a function

func是表示函数的对象,可以将其分配给变量或传递给另一个函数。 带括号的func()调用该函数并返回其输出。

9.说明Map功能的工作方式

map通过将函数应用于序列中的每个元素,返回由返回值组成的列表。

def add_three(x):      return x + 3  li = [1,2,3]  [i for i in map(add_three, li)] #=> [4, 5, 6]

上面,我为列表中的每个元素添加了3。

10.解释reduce函数的工作原理

将头缠起来直到您几次使用都很难。

reduce接受一个函数和一个序列,然后对该序列进行迭代。 在每次迭代中,当前元素和前一个元素的输出都将传递给函数。 最后,返回一个值。

from functools import reduce def add_three(x,y):      return x + y  li = [1,2,3,5] reduce(add_three, li) #=> 11

返回11,它是1 + 2 + 3 + 5的总和。

11.解释filter功能如何工作

过滤器按字面意思执行。 它按顺序过滤元素。

每个元素都传递给一个函数,如果函数返回True,则按输出顺序返回;如果函数返回False,则将其丢弃。

def add_three(x):      if x % 2 == 0:      return True      else: return False  li = [1,2,3,4,5,6,7,8]  [i for i in filter(add_three, li)] #=> [2, 4, 6, 8]

请注意如何删除所有不能被2整除的元素。

12. python是按引用调用还是按值调用?

如果您对这个问题进行了搜索并阅读了前几页,请准备好深入了解语义。 您最好仅了解其工作原理。

不变的对象(如字符串,数字和元组)是按值调用的。 请注意,在函数内部进行修改后,name的值不会在函数外部发生变化。  name的值已分配给该功能范围内的内存中的新块。

name = 'chr' def add_chars(s):      s += 'is' print(s)   add_chars(name)  print(name) #=> chris #=> chr

可变对象(如list)是按引用调用的。 注意如何在函数外部定义的列表在函数内部被修改。 函数中的参数指向内存中存储li值的原始块。

li = [1,2] def add_element(seq):      seq.append(3)      print(seq)   add_element(li)  print(li) #=> [1, 2, 3] #=> [1, 2, 3]

13.如何撤消清单?

请注意如何在列表上调用reverse()并对其进行突变。 它不会返回变异列表本身。

li = ['a','b','c'] print(li) li.reverse()  print(li) #=> ['a', 'b', 'c'] #=> ['c', 'b', 'a']

14.字符串乘法如何工作?

让我们看看将字符串" cat"乘以3的结果。

'cat' * 3 #=> 'catcatcat'

该字符串将自身连接3次。

15.列表乘法如何工作?

我们来看看将列表[1,2,3]乘以2的结果。

[1,2,3] * 2 #=> [1, 2, 3, 1, 2, 3]

输出包含重复两次的[1,2,3]内容的列表。

16.在类上"self"指的是什么?

自我是指类本身的实例。 这就是我们赋予方法访问权限并能够更新方法所属对象的能力。

下面,将self传递给__init __()使我们能够在初始化时设置实例的颜色。

class Shirt:      def __init__(self, color):      self.color = color   s = Shirt('yellow') s.color #=> 'yellow'

17.如何连接python中的列表?

将2个列表加在一起将它们串联在一起。 请注意,数组的功能不同。

a = [1,2] b = [3,4,5] a + b #=> [1, 2, 3, 4, 5]

18.浅拷贝和深拷贝之间有什么区别?

我们将在可变对象(列表)的上下文中进行讨论。 对于不可变的物体,浅与深并不重要。

我们将介绍3种情况。

i)引用原始对象。 这将新名称li2指向li1指向的内存相同位置。 因此,我们对li1所做的任何更改也会在li2中发生。

li1 = [['a'],['b'],['c']] li2 = li1 li1.append(['d']) print(li2) #=> [['a'], ['b'], ['c'], ['d']]

ii)创建原始文档的浅表副本。 我们可以使用list()构造函数来做到这一点。 浅表副本会创建一个新对象,但会使用对原始对象的引用来填充它。  因此,将新对象添加到原始集合li3中不会传播到li4,但是修改li3中的一个对象将传播到li4。

li3 = [['a'],['b'],['c']] li4 = list(li3) li3.append([4]) print(li4) #=> [['a'], ['b'], ['c']]  li3[0][0] = ['X'] print(li4) #=> [[['X']], ['b'], ['c']]

iii)创建一个深层副本。 这是通过copy.deepcopy()完成的。  现在,这两个对象是完全独立的,并且对其中任何一个所做的更改不会对另一个对象产生影响。

import copy li5 = [['a'],['b'],['c']] li6 = copy.deepcopy(li5) li5.append([4]) li5[0][0] = ['X'] print(li6) #=> [['a'], ['b'], ['c']]

19.列表和数组有什么区别?

注意:Python的标准库有一个数组对象,但在这里我专门指的是常用的Numpy数组。

  • 列表存在于python的标准库中。 数组由Numpy定义。

  • 列表可以在每个索引处填充不同类型的数据。 数组需要齐次元素。

  • 列表上的算术从列表中添加或删除元素。 每个线性代数的数组函数的算术运算。

  • 阵列还使用更少的内存,并具有更多的功能。

我写了另一篇有关数组的文章。

20.如何连接两个数组?

请记住,数组不是列表。 数组来自Numpy和算术函数,例如线性代数。

我们需要使用Numpy的连接函数来实现。

import numpy as np a = np.array([1,2,3]) b = np.array([4,5,6]) np.concatenate((a,b)) #=> array([1, 2, 3, 4, 5, 6])

21.您喜欢Python的什么?

Python非常易读,并且有一种Python方式可以处理几乎所有事情,这意味着一种简洁明了的首选方式。

我将其与Ruby相比,后者通常有很多方法来做某事,而没有指南是首选。

22.您最喜欢使用Python的哪个库?

当处理大量数据时,没有什么比熊猫那么有用了,这使得操作和可视化数据变得轻而易举。

23.命名可变和不可变的对象

不可变表示创建后无法修改状态。 例如:int,float,bool,string和tuple。

可变表示状态可以在创建后进行修改。 示例是列表,字典和集合。

24.您如何将数字四舍五入到小数点后三位?

使用round(value,decimal_places)函数。

a = 5.12345 round(a,3) #=> 5.123

25.您如何分割列表?

切片符号采用3个参数list [start:stop:step],其中step是返回元素的间隔。

a = [0,1,2,3,4,5,6,7,8,9] print(a[:2]) #=> [0, 1] print(a[8:]) #=> [8, 9] print(a[2:8]) #=> [2, 3, 4, 5, 6, 7] print(a[2:8:2]) #=> [2, 4, 6]

26.什么是pickle?

酸洗是在Python中序列化和反序列化对象的首选方法。

在下面的示例中,我们对字典列表进行序列化和反序列化。

import pickleobj = [ {'id':1, 'name':'Stuffy'}, {'id':2, 'name': 'Fluffy'}]  with open('file.p', 'wb') as f:      pickle.dump(obj, f)  with open('file.p', 'rb') as f:      loaded_obj = pickle.load(f)  print(loaded_obj) #=> [{'id': 1, 'name': 'Stuffy'}, {'id': 2, 'name': 'Fluffy'}]

27.字典和JSON有什么区别?

Dict是python数据类型,是已索引但无序的键和值的集合。

JSON只是遵循指定格式的字符串,用于传输数据。

28.您在Python中使用了哪些ORM?

ORM(对象关系映射)将数据模型(通常在应用程序中)映射到数据库表,并简化了数据库事务。

SQLAlchemy通常在Flask的上下文中使用,而Django拥有自己的ORM。

29. any()和all()如何工作?

Any接受一个序列,如果序列中的任何元素为true,则返回true。

仅当序列中的所有元素均为true时,All才返回true。

a = [False, False, False] b = [True, False, False] c = [True, True, True] print( any(a) ) print( any(b) ) print( any(c) ) #=> False #=> True #=> True  print( all(a) ) print( all(b) )print( all(c) )#=> False#=> False#=> True

30.字典或列表的查找速度更快吗?

在列表中查找值需要O(n)时间,因为整个列表需要遍历直到找到值为止。

在字典中查找键需要O(1)时间,因为它是一个哈希表。

如果值很多,这可能会造成巨大的时差,因此通常建议使用字典来提高速度。 但是它们确实还有其他限制,例如需要唯一键。

31.模块和包装之间有什么区别?

模块是可以一起导入的文件(或文件集合)。

import sklearn

包是模块的目录。

from sklearn import cross_validation

因此,包是模块,但并非所有模块都是包。

32.如何在Python中递增和递减整数?

可以使用+-和-=进行递增和递减。

value = 5 value += 1 print(value) #=> 6 value -= 1 value -= 1 print(value) #=> 4

33.如何返回整数的二进制?

使用bin()函数。

bin(5) #=> '0b101'

34.如何从列表中删除重复的元素?

可以通过将列表转换为集合然后返回列表来完成。

a = [1,1,1,2,3] a = list(set(a)) print(a) #=> [1, 2, 3]

35.如何检查列表中是否存在值?

用于。

'a' in ['a','b','c'] #=> True 'a' in [1,2,3] #=> False

36. append和extend有什么区别?

append将值添加到列表,而extend将另一个列表中的值添加到列表。

a = [1,2,3] b = [1,2,3] a.append(6) print(a) #=> [1, 2, 3, 6] b.extend([4,5]) print(b) #=> [1, 2, 3, 4, 5]

37.如何取整数的绝对值?

这可以通过abs()函数来完成。

abs(2) #=> 2 abs(-2) #=> 2

38.如何将两个列表组合成一个元组列表?

您可以使用zip函数将列表组合成一个元组列表。 这不仅限于仅使用两个列表。 也可以用3个或更多来完成。

a = ['a','b','c'] b = [1,2,3] [(k,v) for k,v in zip(a,b)] #=> [('a', 1), ('b', 2), ('c', 3)]

39.如何按字母顺序对字典排序?

您无法对字典进行"排序",因为字典没有顺序,但是您可以返回已排序的元组列表,其中包含字典中的键和值。

d = {'c':3, 'd':4, 'b':2, 'a':1} sorted(d.items()) #=> [('a', 1), ('b', 2), ('c', 3), ('d', 4)]

40.一个类如何从Python中的另一个类继承?

在下面的示例中,奥迪继承自Car。 继承带来了父类的实例方法。

class Car():      def drive(self):      print('vroom')  class Audi(Car):      pass    audi = Audi() audi.drive()

41.如何从字符串中删除所有空格?

比较简单的方法是在空白处分割字符串,然后重新连接而没有空格。

s = 'A string with white space' ''.join(s.split()) #=> 'Astringwithwhitespace'

42.为什么要在序列上迭代时使用enumerate()?

enumerate()允许在序列上进行迭代时跟踪索引。 它比定义和递增代表索引的整数更具Python感。

li = ['a','b','c','d','e'] for idx,val in enumerate(li):      print(idx, val) #=> 0 a #=> 1 b #=> 2 c #=> 3 d #=> 4 e

43.pass,continue和break之间有什么区别?

通过意味着什么都不做。 我们之所以通常使用它,是因为Python不允许在其中没有代码的情况下创建类,函数或if语句。

在下面的示例中,如果i> 3中没有代码,则会引发错误,因此我们使用pass。

a = [1,2,3,4,5] for i in a:      if i > 3     : pass    print(i)  #=> 1 #=> 2 #=> 3 #=> 4 #=> 5

继续继续到下一个元素,并暂停当前元素的执行。 因此对于i <3的值,永远不会达到print(i)。

for i in a:      if i < 3:      continue      print(i)  #=> 3 #=> 4 #=> 5

break打破了循环,序列不再重复。 因此,不会打印3以后的元素。

for i in a:      if i == 3:      break      print(i)   #=> 1 #=> 2

44.将以下for循环转换为列表推导。

这个for循环。

a = [1,2,3,4,5]  a2 = [] for i in a:      a2.append(i + 1)     print(a2)  #=> [2, 3, 4, 5, 6]

成为。

a3 = [i+1 for i in a] print(a3)  #=> [2, 3, 4, 5, 6]

列表理解通常被认为是更具Python性的,但仍易于阅读。

45.举例说明三元运算符。

三元运算符是单行if / else语句。

语法看起来像一个if条件else b。

x = 5 y = 10 'greater'  if x > 6 else 'less' #=> 'less'  'greater' if y > 6 else 'less' #=> 'greater'

46.检查字符串是否仅包含数字。

您可以使用isnumeric()。

'123a'.isnumeric() #=> False  '123'.isnumeric() #=> True

47.检查字符串是否仅包含字母。

您可以使用isalpha()。

'123a'.isalpha() #=> False  'a'.isalpha() #=> True

48.检查字符串是否仅包含数字和字母。

您可以使用isalnum()。

'123abc...'.isalnum() #=> False  '123abc'.isalnum() #=> True

49.从字典返回键列表。

这可以通过将字典传递给python的list()构造函数list()来完成。

d = {'id':7, 'name':'Shiba', 'color':'brown', 'speed':'very slow'}  list(d) #=> ['id', 'name', 'color', 'speed']

50.如何对字符串进行大写和小写?

您可以使用upper()和lower()字符串方法。

small_word = 'potatocake' big_word = 'FISHCAKE'  small_word.upper() #=> 'POTATOCAKE' big_word.lower() #=> 'fishcake'

51. remove,del和pop有什么区别?

remove()删除第一个匹配值。

li = ['a','b','c','d'] li.remove('b')  li #=> ['a', 'c', 'd']

del按索引删除元素。

li = ['a','b','c','d'] del li[0]  li #=> ['b', 'c', 'd']

pop()按索引删除一个元素并返回该元素。

li = ['a','b','c','d'] li.pop(2) #=> 'c'  li #=> ['a', 'b', 'd']

52.举一个字典理解的例子。

在下面,我们将创建字典,以字母作为键,并以字母索引作为值。

# creating a list of letters import string list(string.ascii_lowercase) alphabet = list(string.ascii_lowercase) # list comprehensiond = {val:idx for idx,val in enumerate(alphabet)}   d #=> {'a': 0, #=> 'b': 1, #=> 'c': 2, #=> ... #=> 'x': 23, #=> 'y': 24, #=> 'z': 25}

53.如何在Python中执行异常处理?

Python提供了3个单词来处理异常,请尝试使用" except"和" finally"。

语法如下所示。

try:  # try to do this except:  # if try block fails then do this finally:  # always do this

在下面的简单示例中,try块失败,因为我们无法在字符串中添加整数。 else块设置val = 10,然后finally块打印完成。

try:      val = 1 + 'A' except:      val = 10 finally:      print('complete')   print(val)  #=> complete #=> 10

到此,关于“关于Python的面试问答题有哪些”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!


网站题目:关于Python的面试问答题有哪些
URL标题:http://gzruizhi.cn/article/pehpcd.html

其他资讯