189 8069 5689

nosql一词首先是,NoSQL的含义

为什么要使用NoSQL?NOSQL的优势

非常荣幸能受邀在InfoQ开辟这样一个关于NoSQL的专栏,InfoQ是我非常尊重的一家技术媒体,同时我也希望借助InfoQ,在国内推动NoSQL的发展,希望跟我一样有兴趣的朋友加入进来。这次的NoSQL专栏系列将先整体介绍NoSQL,然后介绍如何把NoSQL运用到自己的项目中合适的场景中,还会适当地分析一些成功案例,希望有成功使用NoSQL经验的朋友给我提供一些线索和信息。 NoSQL概念随着web2.0的快速发展,非关系型、分布式数据存储得到了快速的发展,它们不保证关系数据的ACID特性。NoSQL概念在2009年被提了出来。NoSQL最常见的解释是“non-relational”,“Not Only SQL”也被很多人接受。(“NoSQL”一词最早于1998年被用于一个轻量级的关系数据库的名字。) NoSQL被我们用得最多的当数key-value存储,当然还有其他的文档型的、列存储、图型数据库、xml数据库等。在NoSQL概念提出之前,这些数据库就被用于各种系统当中,但是却很少用于web互联网应用。比如cdb、qdbm、bdb数据库。 传统关系数据库的瓶颈 传统的关系数据库具有不错的性能,高稳定型,久经历史考验,而且使用简单,功能强大,同时也积累了大量的成功案例。在互联网领域,MySQL成为了绝对靠前的王者,毫不夸张的说,MySQL为互联网的发展做出了卓越的贡献。 在90年代,一个网站的访问量一般都不大,用单个数据库完全可以轻松应付。在那个时候,更多的都是静态网页,动态交互类型的网站不多。 到了最近10年,网站开始快速发展。火爆的论坛、博客、sns、微博逐渐引领web领域的潮流。在初期,论坛的流量其实也不大,如果你接触网络比较早,你可能还记得那个时候还有文本型存储的论坛程序,可以想象一般的论坛的流量有多大。 Memcached+MySQL 后来,随着访问量的上升,几乎大部分使用MySQL架构的网站在数据库上都开始出现了性能问题,web程序不再仅仅专注在功能上,同时也在追求性能。程序员们开始大量的使用缓存技术来缓解数据库的压力,优化数据库的结构和索引。开始比较流行的是通过文件缓存来缓解数据库压力,但是当访问量继续增大的时候,多台web机器通过文件缓存不能共享,大量的小文件缓存也带了了比较高的IO压力。在这个时候,Memcached就自然的成为一个非常时尚的技术产品。 Memcached作为一个独立的分布式的缓存服务器,为多个web服务器提供了一个共享的高性能缓存服务,在Memcached服务器上,又发展了根据hash算法来进行多台Memcached缓存服务的扩展,然后又出现了一致性hash来解决增加或减少缓存服务器导致重新hash带来的大量缓存失效的弊端。当时,如果你去面试,你说你有Memcached经验,肯定会加分的。 Mysql主从读写分离 由于数据库的写入压力增加,Memcached只能缓解数据库的读取压力。读写集中在一个数据库上让数据库不堪重负,大部分网站开始使用主从复制技术来达到读写分离,以提高读写性能和读库的可扩展性。Mysql的master-slave模式成为这个时候的网站标配了。 分表分库随着web2.0的继续高速发展,在Memcached的高速缓存,MySQL的主从复制,读写分离的基础之上,这时MySQL主库的写压力开始出现瓶颈,而数据量的持续猛增,由于MyISAM使用表锁,在高并发下会出现严重的锁问题,大量的高并发MySQL应用开始使用InnoDB引擎代替MyISAM。同时,开始流行使用分表分库来缓解写压力和数据增长的扩展问题。这个时候,分表分库成了一个热门技术,是面试的热门问题也是业界讨论的热门技术问题。也就在这个时候,MySQL推出了还不太稳定的表分区,这也给技术实力一般的公司带来了希望。虽然MySQL推出了MySQL Cluster集群,但是由于在互联网几乎没有成功案例,性能也不能满足互联网的要求,只是在高可靠性上提供了非常大的保证。 MySQL的扩展性瓶颈 在互联网,大部分的MySQL都应该是IO密集型的,事实上,如果你的MySQL是个CPU密集型的话,那么很可能你的MySQL设计得有性能问题,需要优化了。大数据量高并发环境下的MySQL应用开发越来越复杂,也越来越具有技术挑战性。分表分库的规则把握都是需要经验的。虽然有像淘宝这样技术实力强大的公司开发了透明的中间件层来屏蔽开发者的复杂性,但是避免不了整个架构的复杂性。分库分表的子库到一定阶段又面临扩展问题。还有就是需求的变更,可能又需要一种新的分库方式。 MySQL数据库也经常存储一些大文本字段,导致数据库表非常的大,在做数据库恢复的时候就导致非常的慢,不容易快速恢复数据库。比如1000万4KB大小的文本就接近40GB的大小,如果能把这些数据从MySQL省去,MySQL将变得非常的小。 关系数据库很强大,但是它并不能很好的应付所有的应用场景。MySQL的扩展性差(需要复杂的技术来实现),大数据下IO压力大,表结构更改困难,正是当前使用MySQL的开发人员面临的问题。 NOSQL的优势易扩展NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。也无形之间,在架构的层面上带来了可扩展的能力。 大数据量,高性能 NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用Query Cache,每次表的更新Cache就失效,是一种大粒度的Cache,在针对web2.0的交互频繁的应用,Cache性能不高。而NoSQL的Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了。 灵活的数据模型 NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是一个噩梦。这点在大数据量的web2.0时代尤其明显。 高可用NoSQL在不太影响性能的情况,就可以方便的实现高可用的架构。比如Cassandra,HBase模型,通过复制模型也能实现高可用。 总结NoSQL数据库的出现,弥补了关系数据(比如MySQL)在某些方面的不足,在某些方面能极大的节省开发成本和维护成本。 MySQL和NoSQL都有各自的特点和使用的应用场景,两者的紧密结合将会给web2.0的数据库发展带来新的思路。让关系数据库关注在关系上,NoSQL关注在存储上。

让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:空间域名、网络空间、营销软件、网站建设、宣州网站维护、网站推广。

数据库为什么要关联查询

你说的关联查询是:关系型数据库。

简单来说,关系模型指的就是二维表格模型,而一个关系型数据库就是由二维表及其之间的联系所组成的一个数据组织。

关系模型由关系数据结构、关系操作集合、关系完整性约束三部分组成。

非关系型数据库(NoSQL):NoSQL一词首先是Carlo Strozzi在1998年提出来的,指的是他开发的一个没有SQL功能,轻量级的,开源的关系型数据库。。。。巴拉巴拉

了解了关系型数据库你就知道为什要关联查询了~

NoSQL详解:如何找到对的技术

NoSQL,泛指非关系型的数据库。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题。

虽然关系型数据库系统RDBMS在安装和使用上仍然占有主要地位,但毋庸置疑,非关系型数据库NoSQL技术已经成为今天发展最快的数据库技术。

NoSQL详解:如何找到对的技术

NoSQL是对数据库系统的总称,在某种程度上,它的性能和用途可能完全不同。NoSQL一词最早产生于上世纪九十年代,意思是NoSQL(没有SQL语言),后来随着时间和技术的发展,SQL界面仍然作为处理数据的方式存在,所以NoSQL又有了新的诠释,即NotOnlySQL(不只是SQL语言)。今天,NoSQL数据库凭借着其非关系型、分布式、开源和横向扩展等优势,被认为是下一代数据库产品。

四种主要的NoSQL数据库和它们主要的应用场景

键值数据库:当数据以键的形式访问时,比如通过国际标准书号ISBN找一本书,键值数据库是最理想的。在这里,ISBN是键,书籍的其他信息就是值。必须知道键才能查询,不过值是一堆无意义的数据,读取之后必须经过翻译。

文档存储数据库:该数据库以文档的形式管理和存储数据。有点类似于键值数据库,但文档数据库中的数据有结构。与键值数据库中值是一堆无意义的数据不同,文档数据库中数据以文档的结构被描述,典型的是JavaScriptObjectNotation(JSON)或XML.文档存储数据库中的数据可以通过定义的任何模式进行查询,但键值数据库只能通过它的键进行查询。

非关系型数据库 拆分数据表 影响性能吗

1. 关系型数据库

关系型数据库,是指采用了关系模型来组织数据的数据库。

关系模型是在1970年由IBM的研究员E.F.Codd博士首先提出的,在之后的几十年中,关系模型的概念得到了充分的发展并逐渐成为主流数据库结构的主流模型。

简单来说,关系模型指的就是二维表格模型,而一个关系型数据库就是由二维表及其之间的联系所组成的一个数据组织。

关系模型中常用的概念:

关系:可以理解为一张二维表,每个关系都具有一个关系名,就是通常说的表名

元组:可以理解为二维表中的一行,在数据库中经常被称为记录

属性:可以理解为二维表中的一列,在数据库中经常被称为字段

域:属性的取值范围,也就是数据库中某一列的取值限制

关键字:一组可以唯一标识元组的属性,数据库中常称为主键,由一个或多个列组成

关系模式:指对关系的描述。其格式为:关系名(属性1,属性2, ... ... ,属性N),在数据库中成为表结构

关系型数据库的优点:

容易理解:二维表结构是非常贴近逻辑世界的一个概念,关系模型相对网状、层次等其他模型来说更容易理解

使用方便:通用的SQL语言使得操作关系型数据库非常方便

易于维护:丰富的完整性(实体完整性、参照完整性和用户定义的完整性)大大减低了数据冗余和数据不一致的概率

2. 关系型数据库瓶颈

高并发读写需求

网站的用户并发性非常高,往往达到每秒上万次读写请求,对于传统关系型数据库来说,硬盘I/O是一个很大的瓶颈

海量数据的高效率读写

网站每天产生的数据量是巨大的,对于关系型数据库来说,在一张包含海量数据的表中查询,效率是非常低的

高扩展性和可用性

在基于web的结构当中,数据库是最难进行横向扩展的,当一个应用系统的用户量和访问量与日俱增的时候,数据库却没有办法像web server和app server那样简单的通过添加更多的硬件和服务节点来扩展性能和负载能力。对于很多需要提供24小时不间断服务的网站来说,对数据库系统进行升级和扩展是非常痛苦的事情,往往需要停机维护和数据迁移。

对网站来说,关系型数据库的很多特性不再需要了:

事务一致性

关系型数据库在对事物一致性的维护中有很大的开销,而现在很多web2.0系统对事物的读写一致性都不高

读写实时性

对关系数据库来说,插入一条数据之后立刻查询,是肯定可以读出这条数据的,但是对于很多web应用来说,并不要求这么高的实时性,比如发一条消息之后,过几秒乃至十几秒之后才看到这条动态是完全可以接受的

复杂SQL,特别是多表关联查询

任何大数据量的web系统,都非常忌讳多个大表的关联查询,以及复杂的数据分析类型的复杂SQL报表查询,特别是SNS类型的网站,从需求以及产品阶级角度,就避免了这种情况的产生。往往更多的只是单表的主键查询,以及单表的简单条件分页查询,SQL的功能极大的弱化了

在关系型数据库中,导致性能欠佳的最主要原因是多表的关联查询,以及复杂的数据分析类型的复杂SQL报表查询。为了保证数据库的ACID特性,我们必须尽量按照其要求的范式进行设计,关系型数据库中的表都是存储一个格式化的数据结构。每个元组字段的组成都是一样,即使不是每个元组都需要所有的字段,但数据库会为每个元组分配所有的字段,这样的结构可以便于标语表之间进行链接等操作,但从另一个角度来说它也是关系型数据库性能瓶颈的一个因素。

3. NoSQL

NoSQL一词首先是Carlo Strozzi在1998年提出来的,指的是他开发的一个没有SQL功能,轻量级的,开源的关系型数据库。这个定义跟我们现在对NoSQL的定义有很大的区别,它确确实实字如其名,指的就是“没有SQL”的数据库。但是NoSQL的发展慢慢偏离了初衷,我们要的不是“no sql”,而是“no relational”,也就是我们现在常说的非关系型数据库了。

2009年初,Johan Oskarsson举办了一场关于开源分布式数据库的讨论,Eric Evans在这次讨论中再次提出了NoSQL一词,用于指代那些非关系型的,分布式的,且一般不保证遵循ACID原则的数据存储系统。Eric Evans使用NoSQL这个词,并不是因为字面上的“没有SQL”的意思,他只是觉得很多经典的关系型数据库名字都叫“**SQL”,所以为了表示跟这些关系型数据库在定位上的截然不同,就是用了“NoSQL“一词。

注:数据库事务必须具备ACID特性,ACID是Atomic原子性,Consistency一致性,Isolation隔离性,Durability持久性。

非关系型数据库提出另一种理念,例如,以键值对存储,且结构不固定,每一个元组可以有不一样的字段,每个元组可以根据需要增加一些自己的键值对,这样就不会局限于固定的结构,可以减少一些时间和空间的开销。使用这种方式,用户可以根据需要去添加自己需要的字段,这样,为了获取用户的不同信息,不需要像关系型数据库中,要对多表进行关联查询。仅需要根据id取出相应的value就可以完成查询。但非关系型数据库由于很少的约束,他也不能够提供像SQL所提供的where这种对于字段属性值情况的查询。并且难以体现设计的完整性。他只适合存储一些较为简单的数据,对于需要进行较复杂查询的数据,SQL数据库显的更为合适。

4. 关系型数据库 V.S. 非关系型数据库

关系型数据库的最大特点就是事务的一致性:传统的关系型数据库读写操作都是事务的,具有ACID的特点,这个特性使得关系型数据库可以用于几乎所有对一致性有要求的系统中,如典型的银行系统。

但是,在网页应用中,尤其是SNS应用中,一致性却不是显得那么重要,用户A看到的内容和用户B看到同一用户C内容更新不一致是可以容忍的,或者说,两个人看到同一好友的数据更新的时间差那么几秒是可以容忍的,因此,关系型数据库的最大特点在这里已经无用武之地,起码不是那么重要了。

相反地,关系型数据库为了维护一致性所付出的巨大代价就是其读写性能比较差,而像微博、facebook这类SNS的应用,对并发读写能力要求极高,关系型数据库已经无法应付(在读方面,传统上为了克服关系型数据库缺陷,提高性能,都是增加一级memcache来静态化网页,而在SNS中,变化太快,memchache已经无能为力了),因此,必须用新的一种数据结构存储来代替关系数据库。

关系数据库的另一个特点就是其具有固定的表结构,因此,其扩展性极差,而在SNS中,系统的升级,功能的增加,往往意味着数据结构巨大变动,这一点关系型数据库也难以应付,需要新的结构化数据存储。

于是,非关系型数据库应运而生,由于不可能用一种数据结构化存储应付所有的新的需求,因此,非关系型数据库严格上不是一种数据库,应该是一种数据结构化存储方法的集合。

必须强调的是,数据的持久存储,尤其是海量数据的持久存储,还是需要一种关系数据库这员老将。

5. 非关系型数据库分类

由于非关系型数据库本身天然的多样性,以及出现的时间较短,因此,不想关系型数据库,有几种数据库能够一统江山,非关系型数据库非常多,并且大部分都是开源的。

这些数据库中,其实实现大部分都比较简单,除了一些共性外,很大一部分都是针对某些特定的应用需求出现的,因此,对于该类应用,具有极高的性能。依据结构化方法以及应用场合的不同,主要分为以下几类:

面向高性能并发读写的key-value数据库:

key-value数据库的主要特点即使具有极高的并发读写性能,Redis,Tokyo Cabinet,Flare就是这类的代表

面向海量数据访问的面向文档数据库:

这类数据库的特点是,可以在海量的数据中快速的查询数据,典型代表为MongoDB以及CouchDB

面向可扩展性的分布式数据库:

这类数据库想解决的问题就是传统数据库存在可扩展性上的缺陷,这类数据库可以适应数据量的增加以及数据结构的变化

NoSQL 数据库:何时使用 NoSQL 与 SQL?

NoSQL 数据库因其功能性、易于开发性和可扩展性而广受认可,它们越来越多地用于大数据和实时 Web 应用程序,在本文中,我们通过示例讨论 NoSQL、何时使用 NoSQL 与 SQL 及其用例。

NoSQL是一种下一代数据库管理系统 (DBMS)。NoSQL 数据库具有灵活的模式,可用于构建具有大量数据和高负载的现代应用程序。

“NoSQL”一词最初是由 Carlo Strozzi 在 1998 年创造的,尽管自 1960 年代后期以来就已经存在类似的数据库。然而,NoSQL 的发展始于 2009 年初,并且发展迅速。

在处理大量数据时,任何关系数据库管理系统 (RDBMS) 的响应时间都会变慢。为了解决这个问题,我们可以通过升级现有硬件来“扩大”信息系统,这非常昂贵。但是,NoSQL 可以更好地横向扩展并且更具成本效益。

NoSQL 对于非结构化或非常大的数据对象(例如聊天日志数据、视频或图像)非常有用,这就是为什么 NoSQL 在微软、谷歌、亚马逊、Meta (Facebook) 等互联网巨头中特别受欢迎的原因。

一些流行的 NoSQL 数据库包括:

随着企业更快地积累更大的数据集,结构化数据和关系模式并不总是适合。有必要使用非结构化数据和大型对象来更好地捕获这些信息。

传统的 RDBMS 使用 SQL(结构化查询语言)语法来存储和检索结构化数据,相反,NoSQL 数据库包含广泛的功能,可以存储和检索结构化、半结构化、非结构化和多态数据。

有时,NoSQL 也被称为“ 不仅仅是 SQL ”,强调它可能支持类似 SQL 的语言或与 SQL 数据库并列。SQL 和 NoSQL DBMS 之间的一个区别是 JOIN 功能。SQL 数据库使用 JOIN 子句来组合来自两个或多个表的行,因为 NoSQL 数据库本质上不是表格的,所以这个功能并不总是可行或相关的。

但是,一些 NoSQL DBMS 可以执行类似于 JOIN的操作——就像 MongoDB 一样。这并不意味着不再需要 SQL DBMS,相反,NoSQL 和 SQL 数据库倾向于以不同的方式解决类似的问题。

一般来说,在以下情况下,NoSQL 比 SQL 更可取:

许多行业都在采用 NoSQL,取代关系数据库,从而为某些业务应用程序提供更高的灵活性和可扩展性,下面给出了 NoSQL 数据库的一些企业用例。

内容管理是一组用于收集、管理、传递、检索和发布任何格式的信息的过程,包括文本、图像、音频和视频。NoSQL 数据库可以通过其灵活和开放的数据模型为存储多媒体内容提供更好的选择。

例如,福布斯在短短几个月内就构建了一个基于 MongoDB 的定制内容管理系统,以更低的成本为他们提供了更大的敏捷性。

大数据是指太大而无法通过传统处理系统处理的数据集,实时存储和检索大数据的系统在分析 历史 数据的同时使用流处理来摄取新数据,这是一系列非常适合 NoSQL 数据库的功能。

Zoom使用 DynamoDB(按需模式)使其数据能够在没有性能问题的情况下进行扩展,即使该服务在 COVID-19 大流行的早期使用量激增。

物联网设备具有连接到互联网或通信网络的嵌入式软件和传感器,能够在无需人工干预的情况下收集和共享数据。随着数十亿台设备生成数不清的数据,IoT NoSQL 数据库为 IoT 服务提供商提供了可扩展性和更灵活的架构。

Freshub就是这样的一项服务,它从 MySQL 切换到 MongoDB,以更好地处理其大型、动态、非统一的数据集。

拥有数十亿智能手机用户,可扩展性正成为在移动设备上提供服务的企业面临的最大挑战。具有更灵活数据模型的 NoSQL DBMS 通常是完美的解决方案。

例如,The Weather Channel使用 MongoDB 数据库每分钟处理数百万个请求,同时还处理用户数据并提供天气更新。

什么是NoSQL

与会人员来自Voldemort,Cassandra, Dynomite, HBase, Hypertable, CouchDB, VPork, 以及MongoDB的公司。这个词迅速的被人们注意到,有人认为只有出席了这次会议的几个数据库公司的产品才是NoSQL。事实上,就是对NoSQL这个名字本身的理解也是有分歧的:很多NoSQL的倡导者认为它不仅仅指的是”No” to SQL,应该把它理解成Not Noly SQL才对。对于此,我认为,应该从目前的数据库生态环境中分离出一个独立的数据库类型,这样对NoSQL的未来更有好处。当我们说“x 是一个NoSQL数据库”时,我认为把NoSQL解释成“Not Only”是愚蠢的,因为这会让这个术语变得没有价值。(因为这样一来你实际上可以认为SQL Server也是一个NoSQL数据库)。我们应该把NoSQL的“not only”做另外一种理解——尽管这个时候我更愿意使用PolyglotPersistence这个词。虽然有这么多的讨论,定义如何才是一个NoSQL数据库仍然不那么容易。难道所有不使用SQL的数据库都有资格叫这个名字吗?那如何看待那些更老的数据库如IMS�0�2或�0�2MUMPS呢?如何看待那些没有SQL的关系型数据库系统(例如早期的Ingres)?如果有人试图在这最初的八种数据库上外挂一个SQL接口呢?所以,对于我们这本书来说,我们采取的观点是,NoSQL是目前的数据库家族的外来者。它们有些通用的特征,但没有一个是被明确定义的。不使用关系数据库模型(或SQL语言)开源针对大型集群而设计基于21世纪互联网特征的需求没有schema,可以在任何时候向一条记录添加新字段虽然在软件产业里我们已经习惯了这种模糊的边界定义,但我承认当看到又多了这样一个定义后,心里还是有些不爽。但重要的是,在我们以后数十年的开发工作中,这些数据库提供了我们重要的补充。在未来普遍使用的过程中,这些不清晰的定义顶多就像一个蚊子的叮咬。标签:定义, 数据库


网站标题:nosql一词首先是,NoSQL的含义
本文网址:http://gzruizhi.cn/article/phipps.html

其他资讯