189 8069 5689

pd.Series()函数怎么用

这篇文章将为大家详细讲解有关pd.Series()函数怎么用,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

我们提供的服务有:网站设计制作、网站制作、微信公众号开发、网站优化、网站认证、临渭区ssl等。为上千多家企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的临渭区网站制作公司

1. Series介绍

Pandas模块的数据结构主要有两:1、Series ;2、DataFrame

series是一个一维数组,是基于NumPy的ndarray结构。Pandas会默然用0到n-1来作为series的index,但也可以自己指定index(可以把index理解为dict里面的key)。

2. Series创建

pd.Series([list],index=[list])

参数为list;index为可选参数,若不填写则默认index从0开始;若填写则index长度应该与value长度相等。

import pandas as pd

s=pd.Series([1,2,3,4,5],index=['a','b','c','f','e'])

print s

pd.Series({dict})

以一字典结构为参数。

import pandas as pd

s=pd.Series({'a':1,'b':2,'c':3,'f':4,'e':5})

print s

3. Series取值

s[index] or s[[index的list]]

取值操作类似数组,当取不连续的多个值时可以以list为参数

import pandas as pd

import numpy as np

v = np.random.random_sample(50)

s = pd.Series(v)

s1 = s[[3, 13, 23, 33]]

s2 = s[3:13]

s3 = s[43]

print("s1", s1)

print("s2", s2)

print("s3", s3)

s1 3 0.064095

13 0.354023

23 0.225739

33 0.959288

dtype: float64

s2 3 0.064095

4 0.405651

5 0.024181

6 0.367606

7 0.844005

8 0.405313

9 0.102824

10 0.806400

11 0.950502

12 0.735310

dtype: float64

s3 0.42803253918

4. Series取头和尾的值

.head(n);.tail(n)

取出头n行或尾n行,n为可选参数,若不填默认5

import pandas as pd

import numpy as np

v = np.random.random_sample(50)

s = pd.Series(v)

print("s.head()", s.head())

print("s.head(3)", s.head(3))

print("s.tail()", s.tail())

print("s.head(3)", s.head(3))

s.head() 0 0.714136

1 0.333600

2 0.683784

3 0.044002

4 0.147745

dtype: float64

s.head(3) 0 0.714136

1 0.333600

2 0.683784

dtype: float64

s.tail() 45 0.779509

46 0.778341

47 0.331999

48 0.444811

49 0.028520

dtype: float64

s.head(3) 0 0.714136

1 0.333600

2 0.683784

dtype: float64

5. Series常用操作

import pandas as pd

import numpy as np

v = [10, 3, 2, 2, np.nan]

v = pd.Series(v)

print("len():", len(v)) # Series长度,包括NaN

print("shape():", np.shape(v)) # 矩阵形状,(,)

print("count():", v.count()) # Series长度,不包括NaN

print("unique():", v.unique()) # 出现不重复values值

print("value_counts():\n", v.value_counts()) # 统计value值出现次数

len(): 5无锡人流医院哪家好 http://www.wxbhnkyy120.com/

shape(): (5,)

count(): 4

unique(): [ 10. 3. 2. nan]

value_counts():

2.0 2

3.0 1

10.0 1

dtype: int64

6. Series加法

import pandas as pd

import numpy as np

v = [10, 3, 2, 2, np.nan]

v = pd.Series(v)

sum = v[1:3] + v[1:3]

sum1 = v[1:4] + v[1:4]

sum2 = v[1:3] + v[1:4]

sum3 = v[:3] + v[1:]

print("sum", sum)

print("sum1", sum1)

print("sum2", sum2)

print("sum3", sum3)

sum 1 6.0

2 4.0

dtype: float64

sum1 1 6.0

2 4.0

3 4.0

dtype: float64

sum2 1 6.0

2 4.0

3 NaN

dtype: float64

sum3 0 NaN

1 6.0

2 4.0

3 NaN

4 NaN

dtype: float64

7. Series查找

范围查找

import pandas as pd

import numpy as np

s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}

sa = pd.Series(s, name="age")

print(sa[sa>19])

jim 22.0

lj 24.0

ton 20.0

Name: age, dtype: float64

中位数

import pandas as pd

import numpy as np

s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}

sa = pd.Series(s, name="age")

print("sa.median()", sa.median())

sa.median() 20.0

8. Series赋值

import pandas as pd

import numpy as np

s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}

sa = pd.Series(s, name="age")

print(s)

print('----------------')

sa['ton'] = 99

print(sa)

{'ton': 20, 'mary': 18, 'jack': 19, 'jim': 22, 'lj': 24, 'car': None}

----------------

car NaN

jack 19.0

jim 22.0

lj 24.0

mary 18.0

ton 99.0

Name: age, dtype: float64

关于“pd.Series()函数怎么用”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。


本文名称:pd.Series()函数怎么用
URL地址:http://gzruizhi.cn/article/ppihsg.html

其他资讯